File size: 13,450 Bytes
e368cec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4636973
e368cec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4636973
e368cec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62f5658
e368cec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62f5658
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e368cec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
"""
Live monitor of the website statistics and leaderboard.

Dependency:
sudo apt install pkg-config libicu-dev
pip install pytz gradio gdown plotly polyglot pyicu pycld2 tabulate
"""

import argparse
import ast
import pickle
import os
import threading
import time

import gradio as gr
import numpy as np
import pandas as pd


basic_component_values = [None] * 6
leader_component_values = [None] * 5


# def make_leaderboard_md(elo_results):
#     leaderboard_md = f"""
# # πŸ† Chatbot Arena Leaderboard
# | [Blog](https://lmsys.org/blog/2023-05-03-arena/) | [GitHub](https://github.com/lm-sys/FastChat) | [Paper](https://arxiv.org/abs/2306.05685) | [Dataset](https://github.com/lm-sys/FastChat/blob/main/docs/dataset_release.md) | [Twitter](https://twitter.com/lmsysorg) | [Discord](https://discord.gg/HSWAKCrnFx) |

# This leaderboard is based on the following three benchmarks.
# - [Chatbot Arena](https://lmsys.org/blog/2023-05-03-arena/) - a crowdsourced, randomized battle platform. We use 100K+ user votes to compute Elo ratings.
# - [MT-Bench](https://arxiv.org/abs/2306.05685) - a set of challenging multi-turn questions. We use GPT-4 to grade the model responses.
# - [MMLU](https://arxiv.org/abs/2009.03300) (5-shot) - a test to measure a model's multitask accuracy on 57 tasks.

# πŸ’» Code: The Arena Elo ratings are computed by this [notebook]({notebook_url}). The MT-bench scores (single-answer grading on a scale of 10) are computed by [fastchat.llm_judge](https://github.com/lm-sys/FastChat/tree/main/fastchat/llm_judge). The MMLU scores are mostly computed by [InstructEval](https://github.com/declare-lab/instruct-eval). Higher values are better for all benchmarks. Empty cells mean not available. Last updated: November, 2023.
# """
#     return leaderboard_md

def make_leaderboard_md(elo_results):
    leaderboard_md = f"""
# πŸ† GenAI-Arena Leaderboard
| [Code](https://huggingface.co./spaces/TIGER-Lab/GenAI-Arena/tree/main) | [Dataset](https://huggingface.co./datasets/TIGER-Lab/GenAI-Bench) | [Twitter](https://twitter.com/TianleLI123/status/1757245259149422752) |

"""
    return leaderboard_md


def make_leaderboard_md_live(elo_results):
    leaderboard_md = f"""
# Leaderboard
Last updated: {elo_results["last_updated_datetime"]}
{elo_results["leaderboard_table"]}
"""
    return leaderboard_md


def model_hyperlink(model_name, link):
    return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{model_name}</a>'


def load_leaderboard_table_csv(filename, add_hyperlink=True):
    df = pd.read_csv(filename)
    for col in df.columns:
        if "Arena Elo rating" in col:
            df[col] = df[col].apply(lambda x: int(x) if x != "-" else np.nan)
        elif col == "MMLU":
            df[col] = df[col].apply(lambda x: round(x * 100, 1) if x != "-" else np.nan)
        elif col == "MT-bench (win rate %)":
            df[col] = df[col].apply(lambda x: round(x, 1) if x != "-" else np.nan)
        elif col == "MT-bench (score)":
            df[col] = df[col].apply(lambda x: round(x, 2) if x != "-" else np.nan)
        
        if add_hyperlink and col == "Model":
            df[col] = df.apply(lambda row: model_hyperlink(row[col], row["Link"]), axis=1)
    return df



def build_basic_stats_tab():
    empty = "Loading ..."
    basic_component_values[:] = [empty, None, empty, empty, empty, empty]

    md0 = gr.Markdown(empty)
    gr.Markdown("#### Figure 1: Number of model calls and votes")
    plot_1 = gr.Plot(show_label=False)
    with gr.Row():
        with gr.Column():
            md1 = gr.Markdown(empty)
        with gr.Column():
            md2 = gr.Markdown(empty)
    with gr.Row():
        with gr.Column():
            md3 = gr.Markdown(empty)
        with gr.Column():
            md4 = gr.Markdown(empty)
    return [md0, plot_1, md1, md2, md3, md4]


def get_full_table(anony_arena_df, full_arena_df, model_table_df):
    values = []
    for i in range(len(model_table_df)):
        row = []
        model_key = model_table_df.iloc[i]["key"]
        model_name = model_table_df.iloc[i]["Model"]
        # model display name
        row.append(model_name)
        if model_key in anony_arena_df.index:
            idx = anony_arena_df.index.get_loc(model_key)
            row.append(round(anony_arena_df.iloc[idx]["rating"]))
        else:
            row.append(np.nan)
        if model_key in full_arena_df.index:
            idx = full_arena_df.index.get_loc(model_key)
            row.append(round(full_arena_df.iloc[idx]["rating"]))
        else:
            row.append(np.nan)
        # row.append(model_table_df.iloc[i]["MT-bench (score)"])
        # row.append(model_table_df.iloc[i]["Num Battles"])
        # row.append(model_table_df.iloc[i]["MMLU"])
        # Organization
        row.append(model_table_df.iloc[i]["Organization"])
        # license
        row.append(model_table_df.iloc[i]["License"])

        values.append(row)
    values.sort(key=lambda x: -x[1] if not np.isnan(x[1]) else 1e9)
    return values


def get_arena_table(arena_df, model_table_df):
    # sort by rating
    arena_df = arena_df.sort_values(by=["rating"], ascending=False)
    values = []
    for i in range(len(arena_df)):
        row = []
        model_key = arena_df.index[i]
        model_name = model_table_df[model_table_df["key"] == model_key]["Model"].values[
            0
        ]

        # rank
        row.append(i + 1)
        # model display name
        row.append(model_name)
        # elo rating
        row.append(round(arena_df.iloc[i]["rating"]))
        upper_diff = round(arena_df.iloc[i]["rating_q975"] - arena_df.iloc[i]["rating"])
        lower_diff = round(arena_df.iloc[i]["rating"] - arena_df.iloc[i]["rating_q025"])
        row.append(f"+{upper_diff}/-{lower_diff}")
        # num battles
        row.append(round(arena_df.iloc[i]["num_battles"]))
        # Organization
        row.append(
            model_table_df[model_table_df["key"] == model_key]["Organization"].values[0]
        )
        # license
        row.append(
            model_table_df[model_table_df["key"] == model_key]["License"].values[0]
        )

        values.append(row)
    return values

def make_arena_leaderboard_md(elo_results):
    arena_df = elo_results["leaderboard_table_df"]
    last_updated = elo_results["last_updated_datetime"]
    total_votes = sum(arena_df["num_battles"]) // 2
    total_models = len(arena_df)

    leaderboard_md = f"""


Total #models: **{total_models}**(anonymous). Total #votes: **{total_votes}**. Last updated: {last_updated}.
(Note: Only anonymous votes are considered here. Check the full leaderboard for all votes.)

Contribute the votes πŸ—³οΈ at [GenAI-Arena](https://huggingface.co./spaces/TIGER-Lab/GenAI-Arena)! 

If you want to see more models, please help us [add them](https://huggingface.co./spaces/TIGER-Lab/GenAI-Arena/tree/main?tab=readme-ov-file#-contributing-).
"""
    return leaderboard_md

def make_full_leaderboard_md(elo_results):
    arena_df = elo_results["leaderboard_table_df"]
    last_updated = elo_results["last_updated_datetime"]
    total_votes = sum(arena_df["num_battles"]) // 2
    total_models = len(arena_df)

    leaderboard_md = f"""
Total #models: **{total_models}**(full:anonymous+open). Total #votes: **{total_votes}**. Last updated: {last_updated}.

Contribute your vote πŸ—³οΈ at [vision-arena](https://huggingface.co./spaces/WildVision/vision-arena)! 
"""
    return leaderboard_md

def build_leaderboard_tab(elo_results_file, leaderboard_table_file, show_plot=True):
    if elo_results_file is None:  # Do live update
        md = "Loading ..."
        p1 = p2 = p3 = p4 = None
    else:
        with open(elo_results_file, "rb") as fin:
            elo_results = pickle.load(fin)

        anony_elo_results = elo_results["anony"]
        full_elo_results = elo_results["full"]
        anony_arena_df = anony_elo_results["leaderboard_table_df"]
        full_arena_df = full_elo_results["leaderboard_table_df"]
        p1 = anony_elo_results["win_fraction_heatmap"]
        p2 = anony_elo_results["battle_count_heatmap"]
        p3 = anony_elo_results["bootstrap_elo_rating"]
        p4 = anony_elo_results["average_win_rate_bar"]
        
        md = make_leaderboard_md(anony_elo_results)
        
    md_1 = gr.Markdown(md, elem_id="leaderboard_markdown")

    if leaderboard_table_file:
        model_table_df = load_leaderboard_table_csv(leaderboard_table_file)
        with gr.Tabs() as tabs:
            # arena table
            arena_table_vals = get_arena_table(anony_arena_df, model_table_df)
            with gr.Tab("Arena Elo", id=0):
                md = make_arena_leaderboard_md(anony_elo_results)
                gr.Markdown(md, elem_id="leaderboard_markdown")
                gr.Dataframe(
                    headers=[
                        "Rank",
                        "πŸ€– Model",
                        "⭐ Arena Elo",
                        "πŸ“Š 95% CI",
                        "πŸ—³οΈ Votes",
                        "Organization",
                        "License",
                    ],
                    datatype=[
                        "str",
                        "markdown",
                        "number",
                        "str",
                        "number",
                        "str",
                        "str",
                    ],
                    value=arena_table_vals,
                    elem_id="arena_leaderboard_dataframe",
                    height=700,
                    column_widths=[50, 200, 100, 100, 100, 150, 150],
                    wrap=True,
                )
            with gr.Tab("Full Leaderboard", id=1):
                md = make_full_leaderboard_md(full_elo_results)
                gr.Markdown(md, elem_id="leaderboard_markdown")
                full_table_vals = get_full_table(anony_arena_df, full_arena_df, model_table_df)
                gr.Dataframe(
                    headers=[
                        "πŸ€– Model",
                        "⭐ Arena Elo (anony)",
                        "⭐ Arena Elo (full)",
                        "Organization",
                        "License",
                    ],
                    datatype=["markdown", "number", "number", "str", "str"],
                    value=full_table_vals,
                    elem_id="full_leaderboard_dataframe",
                    column_widths=[200, 100, 100, 100, 150, 150],
                    height=700,
                    wrap=True,
                )
                
        gr.Markdown(
            """ ## We are still collecting more votes on more models. The ranking will be updated very fruquently. Please stay tuned! 
            """,
            elem_id="leaderboard_markdown",
        )
        
        if show_plot:
            win_fraction_heatmap = anony_elo_results["win_fraction_heatmap"]
            battle_count_heatmap = anony_elo_results["battle_count_heatmap"]
            bootstrap_elo_rating = anony_elo_results["bootstrap_elo_rating"]
            average_win_rate_bar = anony_elo_results["average_win_rate_bar"]
            with gr.Row():
                with gr.Column():
                    gr.Markdown(
                        "#### Figure 1: Fraction of Model A Wins for All Non-tied A vs. B Battles"
                    )
                    plot_1 = gr.Plot(win_fraction_heatmap, show_label=False)
                with gr.Column():
                    gr.Markdown(
                        "#### Figure 2: Battle Count for Each Combination of Models (without Ties)"
                    )
                    plot_2 = gr.Plot(battle_count_heatmap, show_label=False)
            with gr.Row():
                with gr.Column():
                    gr.Markdown(
                        "#### Figure 3: Bootstrap of Elo Estimates (1000 Rounds of Random Sampling)"
                    )
                    plot_3 = gr.Plot(bootstrap_elo_rating, show_label=False)
                with gr.Column():
                    gr.Markdown(
                        "#### Figure 4: Average Win Rate Against All Other Models (Assuming Uniform Sampling and No Ties)"
                    )
                    plot_4 = gr.Plot(average_win_rate_bar, show_label=False)
    
    else:
        pass

    leader_component_values[:] = [md, p1, p2, p3, p4]

    """
    with gr.Row():
        with gr.Column():
            gr.Markdown(
                "#### Figure 1: Fraction of Model A Wins for All Non-tied A vs. B Battles"
            )
            plot_1 = gr.Plot(p1, show_label=False)
        with gr.Column():
            gr.Markdown(
                "#### Figure 2: Battle Count for Each Combination of Models (without Ties)"
            )
            plot_2 = gr.Plot(p2, show_label=False)
    with gr.Row():
        with gr.Column():
            gr.Markdown(
                "#### Figure 3: Bootstrap of Elo Estimates (1000 Rounds of Random Sampling)"
            )
            plot_3 = gr.Plot(p3, show_label=False)
        with gr.Column():
            gr.Markdown(
                "#### Figure 4: Average Win Rate Against All Other Models (Assuming Uniform Sampling and No Ties)"
            )
            plot_4 = gr.Plot(p4, show_label=False)
    """

    from .utils import acknowledgment_md

    gr.Markdown(acknowledgment_md)

    # return [md_1, plot_1, plot_2, plot_3, plot_4]
    return [md_1]