Spaces:
Running
on
Zero
Running
on
Zero
File size: 5,492 Bytes
e368cec |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 |
from collections import namedtuple
from typing import List
ModelInfo = namedtuple("ModelInfo", ["simple_name", "link", "description"])
model_info = {}
def register_model_info(
full_names: List[str], simple_name: str, link: str, description: str
):
info = ModelInfo(simple_name, link, description)
for full_name in full_names:
model_info[full_name] = info
def get_model_info(name: str) -> ModelInfo:
if name in model_info:
return model_info[name]
else:
# To fix this, please use `register_model_info` to register your model
return ModelInfo(
name, "", "Register the description at fastchat/model/model_registry.py"
)
def get_model_description_md(model_list):
model_description_md = """
| | | |
| ---- | ---- | ---- |
"""
ct = 0
visited = set()
for i, name in enumerate(model_list):
minfo = get_model_info(name)
if minfo.simple_name in visited:
continue
visited.add(minfo.simple_name)
one_model_md = f"[{minfo.simple_name}]({minfo.link}): {minfo.description}"
if ct % 3 == 0:
model_description_md += "|"
model_description_md += f" {one_model_md} |"
if ct % 3 == 2:
model_description_md += "\n"
ct += 1
return model_description_md
# regist image generation models
register_model_info(
["imagenhub_LCM_generation"],
"LCM",
"https://huggingface.co./SimianLuo/LCM_Dreamshaper_v7",
"Latent Consistency Models.",
)
register_model_info(
["imagenhub_PlayGroundV2_generation"],
"Playground v2",
"https://huggingface.co./playgroundai/playground-v2-1024px-aesthetic",
"Playground v2 – 1024px Aesthetic Model",
)
register_model_info(
["imagenhub_PlayGroundV2.5_generation"],
"Playground v2.5",
"https://huggingface.co./playgroundai/playground-v2.5-1024px-aesthetic",
"Playground v2.5 is the state-of-the-art open-source model in aesthetic quality",
)
register_model_info(
["imagenhub_OpenJourney_generation"],
"Openjourney",
"https://huggingface.co./prompthero/openjourney",
"Openjourney is an open source Stable Diffusion fine tuned model on Midjourney images, by PromptHero.",
)
register_model_info(
["imagenhub_SDXLTurbo_generation"],
"SDXLTurbo",
"https://huggingface.co./stabilityai/sdxl-turbo",
"SDXL-Turbo is a fast generative text-to-image model.",
)
register_model_info(
["imagenhub_SDXL_generation"],
"SDXL",
"https://huggingface.co./stabilityai/stable-diffusion-xl-base-1.0",
"SDXL is a Latent Diffusion Model that uses two fixed, pretrained text encoders.",
)
register_model_info(
["imagenhub_PixArtAlpha_generation"],
"PixArtAlpha",
"https://huggingface.co./PixArt-alpha/PixArt-XL-2-1024-MS",
"Pixart-α consists of pure transformer blocks for latent diffusion.",
)
register_model_info(
["imagenhub_SDXLLightning_generation"],
"SDXL-Lightning",
"https://huggingface.co./ByteDance/SDXL-Lightning",
"SDXL-Lightning is a lightning-fast text-to-image generation model.",
)
register_model_info(
["imagenhub_StableCascade_generation"],
"StableCascade",
"https://huggingface.co./stabilityai/stable-cascade",
"StableCascade is built upon the Würstchen architecture and working at a much smaller latent space.",
)
# regist image edition models
register_model_info(
["imagenhub_CycleDiffusion_edition"],
"CycleDiffusion",
"https://github.com/ChenWu98/cycle-diffusion?tab=readme-ov-file",
"A latent space for stochastic diffusion models.",
)
register_model_info(
["imagenhub_Pix2PixZero_edition"],
"Pix2PixZero",
"https://pix2pixzero.github.io/",
"A zero-shot Image-to-Image translation model.",
)
register_model_info(
["imagenhub_Prompt2prompt_edition"],
"Prompt2prompt",
"https://prompt-to-prompt.github.io/",
"Image Editing with Cross-Attention Control.",
)
# register_model_info(
# ["imagenhub_SDEdit_edition"],
# "SDEdit",
# "",
# "xxx",
# )
register_model_info(
["imagenhub_InstructPix2Pix_edition"],
"InstructPix2Pix",
"https://www.timothybrooks.com/instruct-pix2pix",
"An instruction-based image editing model.",
)
register_model_info(
["imagenhub_MagicBrush_edition"],
"MagicBrush",
"https://osu-nlp-group.github.io/MagicBrush/",
"Manually Annotated Dataset for Instruction-Guided Image Editing.",
)
register_model_info(
["imagenhub_PNP_edition"],
"PNP",
"https://github.com/MichalGeyer/plug-and-play",
"Plug-and-Play Diffusion Features for Text-Driven Image-to-Image Translation.",
)
register_model_info(
["fal_stable_cascade"],
"StableCascade",
"https://fal.ai/models/stable-cascade/api",
"StableCascade is a generative model that can generate high-quality images from text prompts.",
)
models = ['imagenhub_LCM_generation','imagenhub_SDXLTurbo_generation','imagenhub_SDXL_generation',
'imagenhub_OpenJourney_generation','imagenhub_PixArtAlpha_generation','imagenhub_SDXLLightning_generation',
'imagenhub_StableCascade_generation','imagenhub_PlaygroundV2_generation', 'fal_Playground-v25_generation', 'fal_stable_cascade',
'imagenhub_CycleDiffusion_edition', 'imagenhub_Pix2PixZero_edition', 'imagenhub_Prompt2prompt_edition',
'imagenhub_SDEdit_edition', 'imagenhub_InstructPix2Pix_edition', 'imagenhub_MagicBrush_edition', 'imagenhub_PNP_edition']
|