File size: 16,411 Bytes
e368cec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
"""Additional information of the models."""
from collections import namedtuple, OrderedDict
from typing import List


ModelInfo = namedtuple("ModelInfo", ["simple_name", "link", "description"])


model_info = OrderedDict()


def register_model_info(
    full_names: List[str], simple_name: str, link: str, description: str
):
    info = ModelInfo(simple_name, link, description)

    for full_name in full_names:
        model_info[full_name] = info


def get_model_info(name: str) -> ModelInfo:
    if name in model_info:
        return model_info[name]
    else:
        # To fix this, please use `register_model_info` to register your model
        return ModelInfo(
            name, "", "Register the description at arena.model/model_registry.py"
        )


register_model_info(
    [
        "IEITYuan/Yuan2-2B-Janus-hf",
        "IEITYuan/Yuan2-2B-hf",
        "IEITYuan/Yuan2-51B-hf",
        "IEITYuan/Yuan2-102B-hf",
    ],
    "IEIT-Yuan2",
    "https://github.com/IEIT-Yuan/Yuan-2.0",
    "Yuan2.0 is a new generation Fundamental Large Language Model developed by IEIT System.",
)

register_model_info(
    ["mixtral-8x7b-instruct-v0.1", "mistral-7b-instruct"],
    "Mixtral of experts",
    "https://mistral.ai/news/mixtral-of-experts/",
    "A Mixture-of-Experts model by Mistral AI",
)

register_model_info(
    ["gemini-pro"],
    "Gemini",
    "https://blog.google/technology/ai/google-gemini-pro-imagen-duet-ai-update/",
    "Gemini by Google",
)

register_model_info(
    ["gemini-pro-vision"],
    "Gemini",
    "https://blog.google/technology/ai/google-gemini-pro-imagen-duet-ai-update/",
    "Gemini by Google",
)

register_model_info(
    ["solar-10.7b-instruct-v1.0"],
    "SOLAR-10.7B-Instruct",
    "https://huggingface.co./upstage/SOLAR-10.7B-Instruct-v1.0",
    "A model trained using depth up-scaling by Upstage AI",
)

register_model_info(
    ["gpt-4-turbo"],
    "GPT-4-Turbo",
    "https://platform.openai.com/docs/models/gpt-4-and-gpt-4-turbo",
    "GPT-4-Turbo by OpenAI",
)

register_model_info(
    ["gpt-4-vision-preview"],
    "gpt-4-vision-preview",
    "https://platform.openai.com/docs/models/gpt-4-and-gpt-4-turbo",
    "GPT-4(V) by OpenAI",
)

register_model_info(
    ["gpt-3.5-turbo", "gpt-3.5-turbo-0314", "gpt-3.5-turbo-0613", "gpt-3.5-turbo-1106"],
    "GPT-3.5",
    "https://platform.openai.com/docs/models/gpt-3-5",
    "GPT-3.5-Turbo by OpenAI",
)

register_model_info(
    ["gpt-4", "gpt-4-0314", "gpt-4-0613"],
    "GPT-4",
    "https://openai.com/research/gpt-4",
    "GPT-4 by OpenAI",
)

register_model_info(
    ["claude-2.1", "claude-2.0"],
    "Claude",
    "https://www.anthropic.com/index/claude-2",
    "Claude 2 by Anthropic",
)

register_model_info(
    ["claude-1"],
    "Claude",
    "https://www.anthropic.com/index/introducing-claude",
    "Claude 1 by Anthropic",
)

register_model_info(
    ["claude-instant-1", "claude-instant-1.2"],
    "Claude Instant",
    "https://www.anthropic.com/index/introducing-claude",
    "Claude Instant by Anthropic",
)

register_model_info(
    ["pplx-70b-online", "pplx-7b-online"],
    "pplx-online-llms",
    "https://blog.perplexity.ai/blog/introducing-pplx-online-llms",
    "Online LLM API by Perplexity AI",
)

register_model_info(
    ["openhermes-2.5-mistral-7b"],
    "OpenHermes-2.5-Mistral-7B",
    "https://huggingface.co./teknium/OpenHermes-2.5-Mistral-7B",
    "a mistral-based model fine-tuned on 1M GPT-4 outputs",
)

register_model_info(
    ["starling-lm-7b-alpha"],
    "Starling-LM-7B-alpha",
    "https://huggingface.co./berkeley-nest/Starling-LM-7B-alpha",
    "an open model trained using RLAIF by Berkeley",
)

register_model_info(
    ["tulu-2-dpo-70b"],
    "Tulu 2",
    "https://huggingface.co./allenai/tulu-2-dpo-70b",
    "an instruction and RLHF model by UW/AllenAI",
)

register_model_info(
    ["yi-34b-chat", "yi-6b-chat"],
    "Yi-Chat",
    "https://huggingface.co./01-ai/Yi-34B-Chat",
    "A large language model by 01 AI",
)

register_model_info(
    ["llama-2-70b-chat", "llama-2-34b-chat", "llama-2-13b-chat", "llama-2-7b-chat"],
    "Llama 2",
    "https://ai.meta.com/llama/",
    "open foundation and fine-tuned chat models by Meta",
)

register_model_info(
    [
        "vicuna-33b",
        "vicuna-33b-v1.3",
        "vicuna-13b",
        "vicuna-13b-v1.3",
        "vicuna-7b",
        "vicuna-7b-v1.3",
    ],
    "Vicuna",
    "https://lmsys.org/blog/2023-03-30-vicuna/",
    "a chat assistant fine-tuned on user-shared conversations by LMSYS",
)

register_model_info(
    ["chatglm3-6b", "chatglm2-6b", "chatglm-6b"],
    "ChatGLM",
    "https://chatglm.cn/blog",
    "an open bilingual dialogue language model by Tsinghua University",
)

register_model_info(
    ["openchat-3.5"],
    "OpenChat 3.5",
    "https://github.com/imoneoi/openchat",
    "an open model fine-tuned on Mistral-7B using C-RLFT",
)

register_model_info(
    ["tenyxchat-7b-v1"],
    "TenyxChat-7B",
    "https://huggingface.co./tenyx/TenyxChat-7B-v1",
    "an open model DPO trained on top of OpenChat-3.5 using Tenyx fine-tuning",
)

register_model_info(
    ["zephyr-7b-beta", "zephyr-7b-alpha"],
    "Zephyr",
    "https://huggingface.co./HuggingFaceH4/zephyr-7b-alpha",
    "a chatbot fine-tuned from Mistral by Hugging Face",
)

register_model_info(
    ["notus-7b-v1"],
    "Notus",
    "https://huggingface.co./argilla/notus-7b-v1",
    "a chatbot fine-tuned from Zephyr SFT by Argilla",
)

register_model_info(
    ["catppt"],
    "CatPPT",
    "https://huggingface.co./rishiraj/CatPPT",
    "a chatbot fine-tuned from a SLERP merged model by Rishiraj Acharya",
)

register_model_info(
    ["TinyLlama"],
    "TinyLlama",
    "https://huggingface.co./TinyLlama/TinyLlama-1.1B-Chat-v1.0",
    "The TinyLlama project is an open endeavor to pretrain a 1.1B Llama model on 3 trillion tokens.",
)

register_model_info(
    ["qwen-14b-chat"],
    "Qwen",
    "https://huggingface.co./Qwen/Qwen-14B-Chat",
    "a large language model by Alibaba Cloud",
)

register_model_info(
    ["codellama-34b-instruct", "codellama-13b-instruct", "codellama-7b-instruct"],
    "Code Llama",
    "https://ai.meta.com/blog/code-llama-large-language-model-coding/",
    "open foundation models for code by Meta",
)

register_model_info(
    ["wizardlm-70b", "wizardlm-30b", "wizardlm-13b"],
    "WizardLM",
    "https://github.com/nlpxucan/WizardLM",
    "an instruction-following LLM using evol-instruct by Microsoft",
)

register_model_info(
    ["wizardcoder-15b-v1.0"],
    "WizardLM",
    "https://github.com/nlpxucan/WizardLM/tree/main/WizardCoder",
    "Empowering Code Large Language Models with Evol-Instruct",
)

register_model_info(
    ["mpt-7b-chat", "mpt-30b-chat"],
    "MPT-Chat",
    "https://www.mosaicml.com/blog/mpt-30b",
    "a chatbot fine-tuned from MPT by MosaicML",
)

register_model_info(
    ["guanaco-33b", "guanaco-65b"],
    "Guanaco",
    "https://github.com/artidoro/qlora",
    "a model fine-tuned with QLoRA by UW",
)

register_model_info(
    ["gpt4all-13b-snoozy"],
    "GPT4All-Snoozy",
    "https://github.com/nomic-ai/gpt4all",
    "a finetuned LLaMA model on assistant style data by Nomic AI",
)

register_model_info(
    ["koala-13b"],
    "Koala",
    "https://bair.berkeley.edu/blog/2023/04/03/koala",
    "a dialogue model for academic research by BAIR",
)

register_model_info(
    ["RWKV-4-Raven-14B"],
    "RWKV-4-Raven",
    "https://huggingface.co./BlinkDL/rwkv-4-raven",
    "an RNN with transformer-level LLM performance",
)

register_model_info(
    ["alpaca-13b"],
    "Alpaca",
    "https://crfm.stanford.edu/2023/03/13/alpaca.html",
    "a model fine-tuned from LLaMA on instruction-following demonstrations by Stanford",
)

register_model_info(
    ["oasst-pythia-12b"],
    "OpenAssistant (oasst)",
    "https://open-assistant.io",
    "an Open Assistant for everyone by LAION",
)

register_model_info(
    ["oasst-sft-7-llama-30b"],
    "OpenAssistant (oasst)",
    "https://open-assistant.io",
    "an Open Assistant for everyone by LAION",
)

register_model_info(
    ["palm-2"],
    "PaLM 2 Chat",
    "https://cloud.google.com/vertex-ai/docs/release-notes#May_10_2023",
    "PaLM 2 for Chat (chat-bison@001) by Google",
)

register_model_info(
    ["llama-7b", "llama-13b"],
    "LLaMA",
    "https://arxiv.org/abs/2302.13971",
    "open and efficient foundation language models by Meta",
)

register_model_info(
    ["open-llama-7b-v2-open-instruct", "open-llama-7b-open-instruct"],
    "Open LLaMa (Open Instruct)",
    "https://medium.com/vmware-data-ml-blog/starter-llm-for-the-enterprise-instruction-tuning-openllama-7b-d05fc3bbaccc",
    "Open LLaMa fine-tuned on instruction-following data by VMware",
)

register_model_info(
    ["dolly-v2-12b"],
    "Dolly",
    "https://www.databricks.com/blog/2023/04/12/dolly-first-open-commercially-viable-instruction-tuned-llm",
    "an instruction-tuned open large language model by Databricks",
)

register_model_info(
    ["stablelm-tuned-alpha-7b"],
    "StableLM",
    "https://github.com/stability-AI/stableLM",
    "Stability AI language models",
)

register_model_info(
    ["codet5p-6b"],
    "CodeT5p-6b",
    "https://huggingface.co./Salesforce/codet5p-6b",
    "Code completion model released by Salesforce",
)

register_model_info(
    ["fastchat-t5-3b", "fastchat-t5-3b-v1.0"],
    "FastChat-T5",
    "https://huggingface.co./lmsys/fastchat-t5-3b-v1.0",
    "a chat assistant fine-tuned from FLAN-T5 by LMSYS",
)

register_model_info(
    ["phoenix-inst-chat-7b"],
    "Phoenix-7B",
    "https://huggingface.co./FreedomIntelligence/phoenix-inst-chat-7b",
    "a multilingual chat assistant fine-tuned from Bloomz to democratize ChatGPT across languages by CUHK(SZ)",
)

register_model_info(
    ["realm-7b-v1"],
    "ReaLM",
    "https://github.com/FreedomIntelligence/ReaLM",
    "A chatbot fine-tuned from LLaMA2 with data generated via iterative calls to UserGPT and ChatGPT by CUHK(SZ) and SRIBD.",
)

register_model_info(
    ["billa-7b-sft"],
    "BiLLa-7B-SFT",
    "https://huggingface.co./Neutralzz/BiLLa-7B-SFT",
    "an instruction-tuned bilingual LLaMA with enhanced reasoning ability by an independent researcher",
)

register_model_info(
    ["h2ogpt-gm-oasst1-en-2048-open-llama-7b-preview-300bt-v2"],
    "h2oGPT-GM-7b",
    "https://huggingface.co./h2oai/h2ogpt-gm-oasst1-en-2048-open-llama-7b-preview-300bt-v2",
    "an instruction-tuned OpenLLaMA with enhanced conversational ability by H2O.ai",
)

register_model_info(
    ["baize-v2-7b", "baize-v2-13b"],
    "Baize v2",
    "https://github.com/project-baize/baize-chatbot#v2",
    "A chatbot fine-tuned from LLaMA with ChatGPT self-chat data and Self-Disillation with Feedback (SDF) by UCSD and SYSU.",
)

register_model_info(
    [
        "airoboros-l2-7b-2.1",
        "airoboros-l2-13b-2.1",
        "airoboros-c34b-2.1",
        "airoboros-l2-70b-2.1",
    ],
    "airoboros",
    "https://huggingface.co./jondurbin/airoboros-l2-70b-2.1",
    "an instruction-tuned LlaMa model tuned with 100% synthetic instruction-response pairs from GPT4",
)

register_model_info(
    [
        "spicyboros-7b-2.2",
        "spicyboros-13b-2.2",
        "spicyboros-70b-2.2",
    ],
    "spicyboros",
    "https://huggingface.co./jondurbin/spicyboros-70b-2.2",
    "de-aligned versions of the airoboros models",
)

register_model_info(
    ["Robin-7b-v2", "Robin-13b-v2", "Robin-33b-v2"],
    "Robin-v2",
    "https://huggingface.co./OptimalScale/robin-7b-v2-delta",
    "A chatbot fine-tuned from LLaMA-7b, achieving competitive performance on chitchat, commonsense reasoning and instruction-following tasks, by OptimalScale, HKUST.",
)

register_model_info(
    ["manticore-13b-chat"],
    "Manticore 13B Chat",
    "https://huggingface.co./openaccess-ai-collective/manticore-13b-chat-pyg",
    "A chatbot fine-tuned from LlaMa across several CoT and chat datasets.",
)

register_model_info(
    ["redpajama-incite-7b-chat"],
    "RedPajama-INCITE-7B-Chat",
    "https://huggingface.co./togethercomputer/RedPajama-INCITE-7B-Chat",
    "A chatbot fine-tuned from RedPajama-INCITE-7B-Base by Together",
)

register_model_info(
    [
        "falcon-7b",
        "falcon-7b-instruct",
        "falcon-40b",
        "falcon-40b-instruct",
        "falcon-180b",
        "falcon-180b-chat",
    ],
    "Falcon",
    "https://huggingface.co./tiiuae/falcon-180B",
    "TII's flagship series of large language models",
)

register_model_info(
    ["tigerbot-7b-sft"],
    "Tigerbot",
    "https://huggingface.co./TigerResearch/tigerbot-7b-sft",
    "TigerBot is a large-scale language model (LLM) with multiple languages and tasks.",
)

register_model_info(
    ["internlm-chat-7b", "internlm-chat-7b-8k"],
    "InternLM",
    "https://huggingface.co./internlm/internlm-chat-7b",
    "InternLM is a multi-language large-scale language model (LLM), developed by SHLAB.",
)

register_model_info(
    ["Qwen-7B-Chat"],
    "Qwen",
    "https://huggingface.co./Qwen/Qwen-7B-Chat",
    "Qwen is a multi-language large-scale language model (LLM), developed by Damo Academy.",
)

register_model_info(
    ["Llama2-Chinese-13b-Chat", "LLama2-Chinese-13B"],
    "Llama2-Chinese",
    "https://huggingface.co./FlagAlpha/Llama2-Chinese-13b-Chat",
    "Llama2-Chinese is a multi-language large-scale language model (LLM), developed by FlagAlpha.",
)

register_model_info(
    ["Chinese-Alpaca-2-7B", "Chinese-Alpaca-2-13B"],
    "Chinese-Alpaca",
    "https://huggingface.co./hfl/chinese-alpaca-2-13b",
    "New extended Chinese vocabulary beyond Llama-2, open-sourcing the Chinese LLaMA-2 and Alpaca-2 LLMs.",
)

register_model_info(
    ["Vigogne-2-7B-Instruct", "Vigogne-2-13B-Instruct"],
    "Vigogne-Instruct",
    "https://huggingface.co./bofenghuang/vigogne-2-7b-instruct",
    "Vigogne-Instruct is a French large language model (LLM) optimized for instruction-following, developed by Bofeng Huang",
)

register_model_info(
    ["Vigogne-2-7B-Chat", "Vigogne-2-13B-Chat"],
    "Vigogne-Chat",
    "https://huggingface.co./bofenghuang/vigogne-2-7b-chat",
    "Vigogne-Chat is a French large language model (LLM) optimized for instruction-following and multi-turn dialogues, developed by Bofeng Huang",
)

register_model_info(
    ["stable-vicuna-13B-HF"],
    "stable-vicuna",
    "https://huggingface.co./TheBloke/stable-vicuna-13B-HF",
    "StableVicuna is a Vicuna model fine-tuned using RLHF via PPO on various conversational and instructional datasets.",
)

register_model_info(
    ["deluxe-chat-v1", "deluxe-chat-v1.1", "deluxe-chat-v1.2"],
    "DeluxeChat",
    "",
    "Deluxe Chat",
)

register_model_info(
    [
        "Xwin-LM-7B-V0.1",
        "Xwin-LM-13B-V0.1",
        "Xwin-LM-70B-V0.1",
        "Xwin-LM-7B-V0.2",
        "Xwin-LM-13B-V0.2",
    ],
    "Xwin-LM",
    "https://github.com/Xwin-LM/Xwin-LM",
    "Chat models developed by Xwin-LM team",
)

register_model_info(
    ["lemur-70b-chat"],
    "Lemur-Chat",
    "https://huggingface.co./OpenLemur/lemur-70b-chat-v1",
    "an openly accessible language model optimized for both natural language and coding capabilities ",
)

register_model_info(
    ["Mistral-7B-OpenOrca"],
    "Open-Orca",
    "https://huggingface.co./Open-Orca/Mistral-7B-OpenOrca",
    "A fine-tune of [Mistral 7B](https://huggingface.co./mistralai/Mistral-7B-v0.1) using [OpenOrca dataset](https://huggingface.co./datasets/Open-Orca/OpenOrca)",
)

register_model_info(
    ["dolphin-2.2.1-mistral-7b"],
    "dolphin-mistral",
    "https://huggingface.co./ehartford/dolphin-2.2.1-mistral-7b",
    "An uncensored fine-tuned Mistral 7B",
)

register_model_info(
    [
        "AquilaChat-7B",
        "AquilaChat2-7B",
        "AquilaChat2-34B",
    ],
    "Aquila-Chat",
    "https://huggingface.co./BAAI/AquilaChat2-34B",
    "Chat models developed by BAAI team",
)

register_model_info(
    ["xDAN-L1-Chat-RL-v1"],
    "xDAN-L1-Chat",
    "https://huggingface.co./xDAN-AI/xDAN-L1-Chat-RL-v1",
    "A large language chat model created by xDAN-AI.",
)

register_model_info(
    ["MetaMath-70B-V1.0", "MetaMath-7B-V1.0"],
    "MetaMath",
    "https://huggingface.co./meta-math",
    "MetaMath is a finetune of Llama2 on [MetaMathQA](https://huggingface.co./datasets/meta-math/MetaMathQA) that specializes in mathematical reasoning.",
)

register_model_info(
    ["Yuan2-2B-hf", "Yuan2-51B-hf", "Yuan2-102B-hf"],
    "IEIYuan",
    "https://huggingface.co./IEITYuan",
    "Yuan2 is a Basemodel developed by IEI.",
)