import math import warnings from dataclasses import dataclass from functools import partial from typing import ( Callable, Dict, Final, List, Literal, Optional, Sequence, Set, Tuple, Type, Union, ) from torch.utils.checkpoint import checkpoint import torch import torch.nn as nn import torch.nn.functional as F try: from timm.layers import ( AttentionPoolLatent, DropPath, LayerType, Mlp, PatchDropout, PatchEmbed, resample_abs_pos_embed, ) from timm.models._manipulate import checkpoint_seq, named_apply except: print('Wrong timm version') from flash_attn import flash_attn_func, flash_attn_varlen_func from typing import Optional import logging import torch import torch.nn as nn import torch.nn.functional as F import os def _no_grad_trunc_normal_(tensor, mean, std, a, b): # Cut & paste from PyTorch official master until it's in a few official releases - RW # Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf def norm_cdf(x): # Computes standard normal cumulative distribution function return (1.0 + math.erf(x / math.sqrt(2.0))) / 2.0 if (mean < a - 2 * std) or (mean > b + 2 * std): warnings.warn( "mean is more than 2 std from [a, b] in nn.init.trunc_normal_. " "The distribution of values may be incorrect.", stacklevel=2, ) with torch.no_grad(): # Values are generated by using a truncated uniform distribution and # then using the inverse CDF for the normal distribution. # Get upper and lower cdf values l = norm_cdf((a - mean) / std) # noqa: E741 u = norm_cdf((b - mean) / std) # Uniformly fill tensor with values from [l, u], then translate to # [2l-1, 2u-1]. tensor.uniform_(2 * l - 1, 2 * u - 1) # Use inverse cdf transform for normal distribution to get truncated # standard normal tensor.erfinv_() # Transform to proper mean, std tensor.mul_(std * math.sqrt(2.0)) tensor.add_(mean) # Clamp to ensure it's in the proper range tensor.clamp_(min=a, max=b) return tensor def trunc_normal_(tensor, mean=0.0, std=1.0, a=-2.0, b=2.0): # type: (torch.Tensor, float, float, float, float) -> torch.Tensor r"""The original timm.models.layers.weight_init.trunc_normal_ can not handle bfloat16 yet, here we first convert the tensor to float32, apply the trunc_normal_() in float32, and then convert it back to its orignal dtype. Fills the input Tensor with values drawn from a truncated normal distribution. The values are effectively drawn from the normal distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)` with values outside :math:`[a, b]` redrawn until they are within the bounds. The method used for generating the random values works best when :math:`a \leq \text{mean} \leq b`. Args: tensor: an n-dimensional `torch.Tensor` mean: the mean of the normal distribution std: the standard deviation of the normal distribution a: the minimum cutoff value b: the maximum cutoff value Examples: >>> w = torch.empty(3, 5) >>> nn.init.trunc_normal_(w) """ with torch.no_grad(): dtype = tensor.dtype tensor_fp32 = tensor.float() tensor_fp32 = _no_grad_trunc_normal_(tensor_fp32, mean, std, a, b) tensor_dtype = tensor_fp32.to(dtype=dtype) tensor.copy_(tensor_dtype) def init_weights(self): if self.pos_embed is not None: trunc_normal_(self.pos_embed, std=self.pos_embed.shape[1] ** -0.5) trunc_normal_(self.latent, std=self.latent_dim**-0.5) def init_weights_vit_timm(module: nn.Module, name: str = "") -> None: """ViT weight initialization, original timm impl (for reproducibility)""" if isinstance(module, nn.Linear): trunc_normal_(module.weight, std=0.02) if module.bias is not None: nn.init.zeros_(module.bias) elif hasattr(module, "init_weights"): module.init_weights() class Attention(nn.Module): fused_attn: Final[bool] def __init__( self, dim: int, num_heads: int = 8, qkv_bias: bool = False, qk_norm: bool = False, attn_drop: float = 0.0, proj_drop: float = 0.0, norm_layer: nn.Module = nn.LayerNorm, ) -> None: super().__init__() assert dim % num_heads == 0, "dim should be divisible by num_heads" self.num_heads = num_heads self.head_dim = dim // num_heads self.scale = self.head_dim**-0.5 # self.fused_attn = use_fused_attn() self.fused_attn = True self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) self.q_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity() self.k_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity() self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(dim, dim) self.proj_drop = nn.Dropout(proj_drop) if proj_drop > 0.0 else nn.Identity() def forward(self, x: torch.Tensor, cu_slens=None) -> torch.Tensor: B, N, C = x.shape qkv = ( self.qkv(x) .reshape(B, N, 3, self.num_heads, self.head_dim) .permute(2, 0, 3, 1, 4) ) q, k, v = qkv.unbind(0) q, k = self.q_norm(q), self.k_norm(k) if cu_slens is not None: q = q.permute(0, 2, 1, 3) # B, num_heads, N, C -> B, N, num_heads, C k = k.permute(0, 2, 1, 3) v = v.permute(0, 2, 1, 3) max_seqlen = torch.max(cu_slens[1:] - cu_slens[:-1]).item() x = flash_attn_varlen_func( q.squeeze(0), k.squeeze(0), v.squeeze(0), cu_seqlens_q=cu_slens, cu_seqlens_k=cu_slens, max_seqlen_q=max_seqlen, max_seqlen_k=max_seqlen, softmax_scale=self.scale, causal=False, ) x = x.reshape(B, N, -1) x = self.proj(x) x = self.proj_drop(x) else: q = q.permute(0, 2, 1, 3) # B, num_heads, N, C -> B, N, num_heads, C k = k.permute(0, 2, 1, 3) v = v.permute(0, 2, 1, 3) x = flash_attn_func(q, k, v, softmax_scale=self.scale) # -> b, n, h, c x = x.reshape(B, N, -1) x = self.proj(x) x = self.proj_drop(x) return x class LayerScale(nn.Module): def __init__( self, dim: int, init_values: float = 1e-5, inplace: bool = False, ) -> None: super().__init__() self.inplace = inplace self.gamma = nn.Parameter(init_values * torch.ones(dim)) def forward(self, x: torch.Tensor) -> torch.Tensor: return x.mul_(self.gamma) if self.inplace else x * self.gamma class Block(nn.Module): def __init__( self, dim: int, num_heads: int, mlp_ratio: float = 4.0, qkv_bias: bool = False, qk_norm: bool = False, proj_drop: float = 0.0, attn_drop: float = 0.0, init_values: Optional[float] = None, drop_path: float = 0.0, act_layer: nn.Module = nn.GELU, norm_layer: nn.Module = nn.LayerNorm, mlp_layer: nn.Module = Mlp, ) -> None: super().__init__() self.norm1 = norm_layer(dim) self.attn = Attention( dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_norm=qk_norm, attn_drop=attn_drop, proj_drop=proj_drop, norm_layer=norm_layer, ) self.ls1 = ( LayerScale(dim, init_values=init_values) if init_values else nn.Identity() ) self.drop_path1 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() self.norm2 = norm_layer(dim) self.mlp = mlp_layer( in_features=dim, hidden_features=int(dim * mlp_ratio), act_layer=act_layer, drop=proj_drop, ) self.ls2 = ( LayerScale(dim, init_values=init_values) if init_values else nn.Identity() ) self.drop_path2 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() def forward(self, x: torch.Tensor, cu_slens=None) -> torch.Tensor: x = x + self.drop_path1(self.ls1(self.attn(self.norm1(x), cu_slens=cu_slens))) x = x + self.drop_path2(self.ls2(self.mlp(self.norm2(x)))) return x class VisionTransformer(nn.Module): """Vision Transformer A PyTorch impl of : `An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale` - https://arxiv.org/abs/2010.11929 """ dynamic_img_size: Final[bool] def __init__( self, img_size: Union[int, Tuple[int, int]] = 224, patch_size: Union[int, Tuple[int, int]] = 16, in_chans: int = 3, num_classes: int = 1000, global_pool: Literal["", "avg", "token", "map"] = "token", embed_dim: int = 768, depth: int = 12, num_heads: int = 12, mlp_ratio: float = 4.0, qkv_bias: bool = True, qk_norm: bool = False, init_values: Optional[float] = None, class_token: bool = True, no_embed_class: bool = False, reg_tokens: int = 0, pre_norm: bool = False, fc_norm: Optional[bool] = None, dynamic_img_size: bool = False, dynamic_img_pad: bool = False, drop_rate: float = 0.0, pos_drop_rate: float = 0.0, patch_drop_rate: float = 0.0, proj_drop_rate: float = 0.0, attn_drop_rate: float = 0.0, drop_path_rate: float = 0.0, weight_init: Literal["skip", "jax", "jax_nlhb", "moco", ""] = "", embed_layer: Callable = PatchEmbed, norm_layer: Optional[LayerType] = None, act_layer: Optional[LayerType] = None, strict_img_size: bool = False, block_fn: Type[nn.Module] = Block, mlp_layer: Type[nn.Module] = Mlp, ignore_head: bool = False, ) -> None: """ Args: img_size: Input image size. patch_size: Patch size. in_chans: Number of image input channels. num_classes: Mumber of classes for classification head. global_pool: Type of global pooling for final sequence (default: 'token'). embed_dim: Transformer embedding dimension. depth: Depth of transformer. num_heads: Number of attention heads. mlp_ratio: Ratio of mlp hidden dim to embedding dim. qkv_bias: Enable bias for qkv projections if True. init_values: Layer-scale init values (layer-scale enabled if not None). class_token: Use class token. no_embed_class: Don't include position embeddings for class (or reg) tokens. reg_tokens: Number of register tokens. fc_norm: Pre head norm after pool (instead of before), if None, enabled when global_pool == 'avg'. drop_rate: Head dropout rate. pos_drop_rate: Position embedding dropout rate. attn_drop_rate: Attention dropout rate. drop_path_rate: Stochastic depth rate. weight_init: Weight initialization scheme. embed_layer: Patch embedding layer. norm_layer: Normalization layer. act_layer: MLP activation layer. block_fn: Transformer block layer. """ super().__init__() assert global_pool in ("", "avg", "token", "map") assert class_token or global_pool != "token" use_fc_norm = global_pool == "avg" if fc_norm is None else fc_norm # norm_layer = get_norm_layer(norm_layer) or partial(nn.LayerNorm, eps=1e-6) # act_layer = get_act_layer(act_layer) or nn.GELU norm_layer = partial(nn.LayerNorm, eps=1e-6) act_layer = nn.GELU self.num_classes = num_classes self.global_pool = global_pool self.num_features = self.embed_dim = ( embed_dim # num_features for consistency with other models ) self.num_prefix_tokens = 1 if class_token else 0 self.num_prefix_tokens += reg_tokens self.num_reg_tokens = reg_tokens self.has_class_token = class_token self.no_embed_class = ( no_embed_class # don't embed prefix positions (includes reg) ) self.dynamic_img_size = dynamic_img_size self.grad_checkpointing = False self.ignore_head = ignore_head embed_args = {} if dynamic_img_size: # flatten deferred until after pos embed embed_args.update(dict(strict_img_size=False, output_fmt="NHWC")) self.patch_embed = embed_layer( img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim, bias=not pre_norm, # disable bias if pre-norm is used (e.g. CLIP) dynamic_img_pad=dynamic_img_pad, strict_img_size=strict_img_size, **embed_args, ) num_patches = self.patch_embed.num_patches self.cls_token = ( nn.Parameter(torch.zeros(1, 1, embed_dim)) if class_token else None ) self.reg_token = ( nn.Parameter(torch.zeros(1, reg_tokens, embed_dim)) if reg_tokens else None ) embed_len = ( num_patches if no_embed_class else num_patches + self.num_prefix_tokens ) self.pos_embed = nn.Parameter(torch.randn(1, embed_len, embed_dim) * 0.02) self.pos_drop = nn.Dropout(p=pos_drop_rate) if patch_drop_rate > 0: self.patch_drop = PatchDropout( patch_drop_rate, num_prefix_tokens=self.num_prefix_tokens, ) else: self.patch_drop = nn.Identity() self.norm_pre = norm_layer(embed_dim) if pre_norm else nn.Identity() dpr = [ x.item() for x in torch.linspace(0, drop_path_rate, depth) ] # stochastic depth decay rule self.blocks = nn.Sequential( *[ block_fn( dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_norm=qk_norm, init_values=init_values, proj_drop=proj_drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer, act_layer=act_layer, mlp_layer=mlp_layer, ) for i in range(depth) ] ) def init_weights(self, mode: Literal["jax", "jax_nlhb", "moco", ""] = "") -> None: assert mode in ("jax", "jax_nlhb", "moco", "") # head_bias = -math.log(self.num_classes) if "nlhb" in mode else 0.0 trunc_normal_(self.pos_embed, std=0.02) if self.cls_token is not None: nn.init.normal_(self.cls_token, std=1e-6) named_apply(init_weights_vit_timm, self) @torch.jit.ignore def no_weight_decay(self) -> Set: return {"pos_embed", "cls_token", "dist_token"} @torch.jit.ignore def group_matcher(self, coarse: bool = False) -> Dict: return dict( stem=r"^cls_token|pos_embed|patch_embed", # stem and embed blocks=[(r"^blocks\.(\d+)", None), (r"^norm", (99999,))], ) @torch.jit.ignore def set_grad_checkpointing(self, enable: bool = True) -> None: self.grad_checkpointing = enable @torch.jit.ignore def get_classifier(self) -> nn.Module: return self.head def reset_classifier(self, num_classes: int, global_pool=None) -> None: self.num_classes = num_classes if global_pool is not None: assert global_pool in ("", "avg", "token", "map") if global_pool == "map" and self.attn_pool is None: assert ( False ), "Cannot currently add attention pooling in reset_classifier()." elif global_pool != "map " and self.attn_pool is not None: self.attn_pool = None # remove attention pooling self.global_pool = global_pool self.head = ( nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity() ) def rescale_positional_embedding(self, out_size): h, w = out_size pos_embed_shape = int((self.pos_embed.shape[1]) ** 0.5) if (h, w) == (pos_embed_shape, pos_embed_shape): return self.pos_embed rescaled_positional_embedding = \ self.pos_embed.new_zeros(1, h*w, self.pos_embed.shape[2]) pe_2d = self.pos_embed[0].T.contiguous().view(1, -1, pos_embed_shape, pos_embed_shape) pe_2d = F.interpolate(pe_2d, out_size, mode='bilinear', align_corners=False).view(-1, h*w) rescaled_positional_embedding[0] = pe_2d.T.contiguous() return rescaled_positional_embedding def _pos_embed(self, x: torch.Tensor) -> torch.Tensor: if self.dynamic_img_size: B, H, W, C = x.shape pos_embed = resample_abs_pos_embed( self.pos_embed, (H, W), num_prefix_tokens=0 if self.no_embed_class else self.num_prefix_tokens, ) x = x.view(B, -1, C) else: pos_embed = self.pos_embed to_cat = [] if self.cls_token is not None: to_cat.append(self.cls_token.expand(x.shape[0], -1, -1)) if self.reg_token is not None: to_cat.append(self.reg_token.expand(x.shape[0], -1, -1)) if self.no_embed_class: # deit-3, updated JAX (big vision) # position embedding does not overlap with class token, add then concat x = x + pos_embed if to_cat: x = torch.cat(to_cat + [x], dim=1) else: # original timm, JAX, and deit vit impl # pos_embed has entry for class token, concat then add if to_cat: x = torch.cat(to_cat + [x], dim=1) x = x + pos_embed return self.pos_drop(x) def _intermediate_layers( self, x: torch.Tensor, n: Union[int, Sequence] = 1, ) -> List[torch.Tensor]: outputs, num_blocks = [], len(self.blocks) take_indices = set( range(num_blocks - n, num_blocks) if isinstance(n, int) else n ) # forward pass x = self.patch_embed(x) x = self._pos_embed(x) x = self.patch_drop(x) x = self.norm_pre(x) for i, blk in enumerate(self.blocks): x = blk(x) if i in take_indices: outputs.append(x) return outputs def get_intermediate_layers( self, x: torch.Tensor, n: Union[int, Sequence] = 1, reshape: bool = False, return_prefix_tokens: bool = False, norm: bool = False, ) -> Tuple[Union[torch.Tensor, Tuple[torch.Tensor]]]: """Intermediate layer accessor (NOTE: This is a WIP experiment). Inspired by DINO / DINOv2 interface """ # take last n blocks if n is an int, if in is a sequence, select by matching indices outputs = self._intermediate_layers(x, n) if norm: outputs = [self.norm(out) for out in outputs] prefix_tokens = [out[:, 0 : self.num_prefix_tokens] for out in outputs] outputs = [out[:, self.num_prefix_tokens :] for out in outputs] if reshape: grid_size = self.patch_embed.grid_size outputs = [ out.reshape(x.shape[0], grid_size[0], grid_size[1], -1) .permute(0, 3, 1, 2) .contiguous() for out in outputs ] if return_prefix_tokens: return tuple(zip(outputs, prefix_tokens)) return tuple(outputs) def forward_features_list(self, x_list): x_all = [] image_sizes = [] for x in x_list: bs, _, h, w = x.shape # fix patch size=14 in datasets pad_h = (self.patch_embed.patch_size[0] - h % self.patch_embed.patch_size[0]) % self.patch_embed.patch_size[0] pad_w = (self.patch_embed.patch_size[1] - w % self.patch_embed.patch_size[1]) % self.patch_embed.patch_size[1] x = F.pad(x, (0, pad_w, 0, pad_h)) bs, _, h, w = x.shape h = h // self.patch_embed.patch_size[0] w = w // self.patch_embed.patch_size[1] x = self.patch_embed(x) x = x + self.rescale_positional_embedding(out_size=(h, w)) x = self.patch_drop(x) x = self.norm_pre(x) x_all.append(x) image_sizes.append((h, w)) slen = [xi.size(1) for xi in x_all] x = torch.cat(x_all, dim=1) cu_indices = [0, ] for i in slen: cu_indices.append(cu_indices[-1] + i) cu_slens = torch.tensor(cu_indices, dtype=torch.int32).to(x.device) for idx, blk in enumerate(self.blocks): if self.grad_checkpointing and not torch.jit.is_scripting(): x = checkpoint(blk, x, cu_slens, use_reentrant=True) else: x = blk(x, cu_slens=cu_slens) feats = x.split(slen, dim=1) #[(1, slen, c)] return feats, image_sizes def forward_features(self, x: torch.Tensor) -> torch.Tensor: bs, _, h, w = x.shape h = h // self.patch_embed.patch_size[0] w = w // self.patch_embed.patch_size[1] x = self.patch_embed(x) # x = self._pos_embed(x) x = x + self.rescale_positional_embedding(out_size=(h, w)) x = self.patch_drop(x) x = self.norm_pre(x) if self.grad_checkpointing and not torch.jit.is_scripting(): x = checkpoint_seq(self.blocks, x) else: x = self.blocks(x) return x, (h, w) def forward_head(self, x: torch.Tensor, pre_logits: bool = False) -> torch.Tensor: x = self.norm(x) if self.attn_pool is not None: x = self.attn_pool(x) elif self.global_pool == "avg": x = x[:, self.num_prefix_tokens :].mean(dim=1) elif self.global_pool: x = x[:, 0] # class token x = self.fc_norm(x) x = self.head_drop(x) return x if pre_logits else self.head(x) def forward(self, x, cal_attn_pool=False): if type(x) is list: x, image_sizes = self.forward_features_list(x) return x, image_sizes, None else: x, image_sizes = self.forward_features(x) return x, image_sizes, None @dataclass class SigLIPVisionCfg: width: int = 1152 layers: Union[Tuple[int, int, int, int], int] = 27 heads: int = 16 patch_size: int = 14 image_size: Union[Tuple[int, int], int] = 336 global_pool: str = "map" mlp_ratio: float = 3.7362 class_token: bool = False num_classes: int = 0 use_checkpoint: bool = False SigLIP_MODEL_CONFIG = { "siglip_so400m_patch14_384": { "image_size": 384, "patch_size": 14, "width": 1152, "layers": 27, "heads": 16, "mlp_ratio": 3.7362, "global_pool": "map", "use_checkpoint": False, }, "siglip_so400m_patch16_384": { "image_size": 384, "patch_size": 16, "width": 1152, "layers": 27, "heads": 16, "mlp_ratio": 3.7362, "global_pool": "map", "use_checkpoint": False, }, "siglip_so400m_patch14_224": { "image_size": 224, "patch_size": 14, "width": 1152, "layers": 27, "heads": 16, "mlp_ratio": 3.7362, "global_pool": "map", "use_checkpoint": False, }, "siglip_large_patch16_384": { "image_size": 384, "patch_size": 16, "width": 1024, "layers": 24, "heads": 16, "mlp_ratio": 4, "global_pool": "map", "use_checkpoint": False, }, } def resize_evaclip_pos_embed(model: VisionTransformer, interpolation: str = 'bicubic'): # interpolate position embedding orig_size = 24 new_size = 128 pos_tokens = model.pos_embed pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, model.embed_dim).permute(0, 3, 1, 2) pos_tokens = torch.nn.functional.interpolate( pos_tokens, size=(new_size, new_size), mode=interpolation, align_corners=False) pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(1, 2) model.pos_embed = nn.Parameter(pos_tokens, requires_grad=True) return model def create_siglip_vit( model_name: str = "siglip_so400m_patch14_384", image_size: int = 384, select_layer: int = -1, path: str = "", gradient_checkpointing: bool = False, **kwargs, ): assert ( model_name in SigLIP_MODEL_CONFIG.keys() ), f"model name should be in {SigLIP_MODEL_CONFIG.keys()}" vision_cfg = SigLIPVisionCfg(**SigLIP_MODEL_CONFIG[model_name]) if select_layer <= 0: layers = min(vision_cfg.layers, vision_cfg.layers + select_layer + 1) else: layers = min(vision_cfg.layers, select_layer) model = VisionTransformer( img_size=2048, patch_size=16, embed_dim=vision_cfg.width, depth=layers, num_heads=vision_cfg.heads, mlp_ratio=vision_cfg.mlp_ratio, class_token=vision_cfg.class_token, global_pool=vision_cfg.global_pool, dynamic_img_pad=False, strict_img_size=False, ignore_head=kwargs.get("ignore_head", False), weight_init=kwargs.get("weight_init", "skip"), num_classes=0 ) if path is not None and os.path.exists(path): ckpt = path else: raise ValueError(f"Model checkpoint not found at {path}") # state_dict = torch.load(ckpt, map_location="cpu") # print('loading vision backbone from', path) # msg = model.load_state_dict(state_dict, strict=False) # print(msg) if gradient_checkpointing: model.set_grad_checkpointing(True) return model import os from transformers import CLIPImageProcessor import torch.distributed as dist class OryxViTWrapper(nn.Module): def __init__(self, vision_tower, path, args, delay_load=False): super().__init__() self.is_loaded = False self.vision_tower_name = vision_tower self.args = args self.path = path self.select_layer = -1 if self.select_layer < -1: self.select_layer += 1 self.select_feature = getattr(args, 'mm_vision_select_feature', 'patch') self.output_dim = 1152 self.vision_tower = create_siglip_vit(path=self.path, model_name='siglip_so400m_patch16_384', gradient_checkpointing=False) if not delay_load: self.load_model() elif getattr(args, "unfreeze_mm_vision_tower", False): # TODO: better detector is needed. print(f"The checkpoint seems to contain `vision_tower` weights: `unfreeze_mm_vision_tower`: True.") self.load_model() def load_model(self, device_map=None): if self.is_loaded: print('{} is already loaded, `load_model` called again, skipping.'.format(self.vision_tower_name)) return self.image_processor = CLIPImageProcessor.from_pretrained("openai/clip-vit-large-patch14") self.image_processor.image_mean = [0.5, 0.5, 0.5] self.image_processor.image_std = [0.5, 0.5, 0.5] print("Loading vision model...") # self.vision_tower = create_siglip_vit(path=self.path, model_name='siglip_so400m_patch16_384', # gradient_checkpointing=False) for p in self.vision_tower.parameters(): p.requires_grad = False self.vision_tower.eval() self.is_loaded = True def train(self, mode = True): self.training = mode if self.is_loaded: self.vision_tower.eval() def forward_func(self, images, force_fix_size=False, cal_attn_pool=False): if type(images) is list: xs = [x.to(self.dtype) for x in images] image_features, img_size, cls_token = self.vision_tower(xs, cal_attn_pool=cal_attn_pool) image_features = [x.to(images[0].dtype) for x in image_features] else: image_forward_outs, img_size, cls_token = self.vision_tower(images.to(self.dtype), cal_attn_pool=cal_attn_pool) image_features = image_forward_outs.to(images.dtype) return image_features, img_size, cls_token def forward(self, images, cal_attn_pool=False): with torch.no_grad(): image_features, img_size, cls_token = self.forward_func(images, cal_attn_pool=cal_attn_pool) return image_features, img_size @property def dummy_feature(self): return torch.zeros(1, 1152, device=self.device, dtype=self.dtype) @property def dtype(self): return self.vision_tower.pos_embed.dtype @property def device(self): return self.vision_tower.pos_embed.device @property def hidden_size(self): return self.output_dim @property def config(self): return type('OryxConfigWrapper', (), { 'patch_size': 16, })()