import os os.environ['LOWRES_RESIZE'] = '384x32' os.environ['HIGHRES_BASE'] = '0x32' os.environ['VIDEO_RESIZE'] = "0x64" os.environ['VIDEO_MAXRES'] = "480" os.environ['VIDEO_MINRES'] = "288" os.environ['MAXRES'] = '1536' os.environ['MINRES'] = '0' os.environ['REGIONAL_POOL'] = '2x' os.environ['FORCE_NO_DOWNSAMPLE'] = '1' os.environ['LOAD_VISION_EARLY'] = '1' os.environ['SKIP_LOAD_VIT'] = '1' import spaces import gradio as gr import torch import re from decord import VideoReader, cpu from PIL import Image import numpy as np import transformers import moviepy.editor as mp from typing import Dict, Optional, Sequence, List import librosa import whisper import torchaudio import subprocess def install_cuda_toolkit(): # CUDA_TOOLKIT_URL = "https://developer.download.nvidia.com/compute/cuda/11.8.0/local_installers/cuda_11.8.0_520.61.05_linux.run" CUDA_TOOLKIT_URL = "https://developer.download.nvidia.com/compute/cuda/12.2.0/local_installers/cuda_12.2.0_535.54.03_linux.run" CUDA_TOOLKIT_FILE = "/tmp/%s" % os.path.basename(CUDA_TOOLKIT_URL) subprocess.call(["wget", "-q", CUDA_TOOLKIT_URL, "-O", CUDA_TOOLKIT_FILE]) subprocess.call(["chmod", "+x", CUDA_TOOLKIT_FILE]) subprocess.call([CUDA_TOOLKIT_FILE, "--silent", "--toolkit"]) os.environ["CUDA_HOME"] = "/usr/local/cuda" os.environ["PATH"] = "%s/bin:%s" % (os.environ["CUDA_HOME"], os.environ["PATH"]) os.environ["LD_LIBRARY_PATH"] = "%s/lib:%s" % ( os.environ["CUDA_HOME"], "" if "LD_LIBRARY_PATH" not in os.environ else os.environ["LD_LIBRARY_PATH"], ) # Fix: arch_list[-1] += '+PTX'; IndexError: list index out of range os.environ["TORCH_CUDA_ARCH_LIST"] = "8.0;8.6" install_cuda_toolkit() subprocess.run('pip install flash-attn==2.5.9.post1 --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "True"}, shell=True) import sys sys.path.append('./ola/CosyVoice_main/') from ola.conversation import conv_templates, SeparatorStyle from ola.model.builder import load_pretrained_model from ola.utils import disable_torch_init from ola.datasets.preprocess import tokenizer_image_token, tokenizer_speech_image_token, tokenizer_speech_question_image_token from ola.mm_utils import get_model_name_from_path, KeywordsStoppingCriteria, process_anyres_video, process_anyres_highres_image_genli from ola.constants import IGNORE_INDEX, DEFAULT_IMAGE_TOKEN, IMAGE_TOKEN_INDEX, DEFAULT_SPEECH_TOKEN from ola.CosyVoice_main.cosyvoice.cli.cosyvoice import CosyVoice from huggingface_hub import hf_hub_download whisper_path = hf_hub_download( repo_id="THUdyh/Ola-7b", filename="large-v3.pt", local_dir="./" ) beats_path = hf_hub_download( repo_id="THUdyh/Ola-7b", filename="BEATs_iter3_plus_AS2M_finetuned_on_AS2M_cpt2.pt", local_dir="./" ) model_path = "THUdyh/Ola-7b" tokenizer, model, image_processor, _ = load_pretrained_model(model_path, None) model = model.to('cuda').eval() model = model.bfloat16() tts_model = CosyVoice('FunAudioLLM/CosyVoice-300M-SFT', load_jit=True, load_onnx=False, fp16=True) OUTPUT_SPEECH = False USE_SPEECH=False title_markdown = """
Ola

Ola: Pushing the Frontiers of Omni-Modal Language Model with Progressive Modality Alignment

Project Page | Github | Huggingface | Paper
""" bibtext = """ ### Citation ``` @article{liu2025ola, title={Ola: Pushing the Frontiers of Omni-Modal Language Model with Progressive Modality Alignment}, author={Liu, Zuyan and Dong, Yuhao and Wang, Jiahui and Liu, Ziwei and Hu, Winston and Lu, Jiwen and Rao, Yongming}, journal={arXiv preprint arXiv:2502.04328}, year={2025} } ``` """ cur_dir = os.path.dirname(os.path.abspath(__file__)) def load_audio(audio_file_name): speech_wav, samplerate = librosa.load(audio_file_name, sr=16000) if len(speech_wav.shape) > 1: speech_wav = speech_wav[:, 0] speech_wav = speech_wav.astype(np.float32) CHUNK_LIM = 480000 SAMPLE_RATE = 16000 speechs = [] speech_wavs = [] if len(speech_wav) <= CHUNK_LIM: speech = whisper.pad_or_trim(speech_wav) speech_wav = whisper.pad_or_trim(speech_wav) speechs.append(speech) speech_wavs.append(torch.from_numpy(speech_wav).unsqueeze(0)) else: for i in range(0, len(speech_wav), CHUNK_LIM): chunk = speech_wav[i : i + CHUNK_LIM] if len(chunk) < CHUNK_LIM: chunk = whisper.pad_or_trim(chunk) speechs.append(chunk) speech_wavs.append(torch.from_numpy(chunk).unsqueeze(0)) mels = [] for chunk in speechs: chunk = whisper.log_mel_spectrogram(chunk, n_mels=128).permute(1, 0).unsqueeze(0) mels.append(chunk) mels = torch.cat(mels, dim=0) speech_wavs = torch.cat(speech_wavs, dim=0) if mels.shape[0] > 25: mels = mels[:25] speech_wavs = speech_wavs[:25] speech_length = torch.LongTensor([mels.shape[1]] * mels.shape[0]) speech_chunks = torch.LongTensor([mels.shape[0]]) return mels, speech_length, speech_chunks, speech_wavs def extract_audio(videos_file_path): my_clip = mp.VideoFileClip(videos_file_path) return my_clip.audio @spaces.GPU(duration=120) def ola_inference(multimodal, audio_path): visual, text = multimodal["files"][0], multimodal["text"] if visual.endswith("image2.png"): modality = "video" visual = f"{cur_dir}/case/case1.mp4" if visual.endswith(".mp4"): modality = "video" else: modality = "image" # input audio and video, do not parse audio in the video, else parse audio in the video if audio_path: USE_SPEECH = True elif modality == "video": USE_SPEECH = True else: USE_SPEECH = False speechs = [] speech_lengths = [] speech_wavs = [] speech_chunks = [] if modality == "video": vr = VideoReader(visual, ctx=cpu(0)) total_frame_num = len(vr) fps = round(vr.get_avg_fps()) uniform_sampled_frames = np.linspace(0, total_frame_num - 1, 64, dtype=int) frame_idx = uniform_sampled_frames.tolist() spare_frames = vr.get_batch(frame_idx).asnumpy() video = [Image.fromarray(frame) for frame in spare_frames] else: image = [Image.open(visual)] image_sizes = [image[0].size] if USE_SPEECH and audio_path: audio_path = audio_path speech, speech_length, speech_chunk, speech_wav = load_audio(audio_path) speechs.append(speech.bfloat16().to('cuda')) speech_lengths.append(speech_length.to('cuda')) speech_chunks.append(speech_chunk.to('cuda')) speech_wavs.append(speech_wav.to('cuda')) print('load audio') elif USE_SPEECH and not audio_path: # parse audio in the video audio = extract_audio(visual) audio.write_audiofile("./video_audio.wav") video_audio_path = './video_audio.wav' speech, speech_length, speech_chunk, speech_wav = load_audio(video_audio_path) speechs.append(speech.bfloat16().to('cuda')) speech_lengths.append(speech_length.to('cuda')) speech_chunks.append(speech_chunk.to('cuda')) speech_wavs.append(speech_wav.to('cuda')) else: speechs = [torch.zeros(1, 3000, 128).bfloat16().to('cuda')] speech_lengths = [torch.LongTensor([3000]).to('cuda')] speech_wavs = [torch.zeros([1, 480000]).to('cuda')] speech_chunks = [torch.LongTensor([1]).to('cuda')] conv_mode = "qwen_1_5" if text: qs = text else: qs = '' if USE_SPEECH and audio_path: qs = DEFAULT_IMAGE_TOKEN + "\n" + "User's question in speech: " + DEFAULT_SPEECH_TOKEN + '\n' elif USE_SPEECH: qs = DEFAULT_SPEECH_TOKEN + DEFAULT_IMAGE_TOKEN + "\n" + qs else: qs = DEFAULT_IMAGE_TOKEN + "\n" + qs conv = conv_templates[conv_mode].copy() conv.append_message(conv.roles[0], qs) conv.append_message(conv.roles[1], None) prompt = conv.get_prompt() if USE_SPEECH and audio_path: input_ids = tokenizer_speech_question_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt").unsqueeze(0).to('cuda') elif USE_SPEECH: input_ids = tokenizer_speech_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt").unsqueeze(0).to('cuda') else: input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt").unsqueeze(0).to('cuda') if modality == "video": video_processed = [] for idx, frame in enumerate(video): image_processor.do_resize = False image_processor.do_center_crop = False frame = process_anyres_video(frame, image_processor) if frame_idx is not None and idx in frame_idx: video_processed.append(frame.unsqueeze(0)) elif frame_idx is None: video_processed.append(frame.unsqueeze(0)) if frame_idx is None: frame_idx = np.arange(0, len(video_processed), dtype=int).tolist() video_processed = torch.cat(video_processed, dim=0).bfloat16().to("cuda") video_processed = (video_processed, video_processed) video_data = (video_processed, (384, 384), "video") else: image_processor.do_resize = False image_processor.do_center_crop = False image_tensor, image_highres_tensor = [], [] for visual in image: image_tensor_, image_highres_tensor_ = process_anyres_highres_image_genli(visual, image_processor) image_tensor.append(image_tensor_) image_highres_tensor.append(image_highres_tensor_) if all(x.shape == image_tensor[0].shape for x in image_tensor): image_tensor = torch.stack(image_tensor, dim=0) if all(x.shape == image_highres_tensor[0].shape for x in image_highres_tensor): image_highres_tensor = torch.stack(image_highres_tensor, dim=0) if type(image_tensor) is list: image_tensor = [_image.bfloat16().to("cuda") for _image in image_tensor] else: image_tensor = image_tensor.bfloat16().to("cuda") if type(image_highres_tensor) is list: image_highres_tensor = [_image.bfloat16().to("cuda") for _image in image_highres_tensor] else: image_highres_tensor = image_highres_tensor.bfloat16().to("cuda") pad_token_ids = 151643 attention_masks = input_ids.ne(pad_token_ids).long().to('cuda') stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2 keywords = [stop_str] stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids) gen_kwargs = {} if "max_new_tokens" not in gen_kwargs: gen_kwargs["max_new_tokens"] = 1024 if "temperature" not in gen_kwargs: gen_kwargs["temperature"] = 0.2 if "top_p" not in gen_kwargs: gen_kwargs["top_p"] = None if "num_beams" not in gen_kwargs: gen_kwargs["num_beams"] = 1 with torch.inference_mode(): if modality == "video": output_ids = model.generate( inputs=input_ids, images=video_data[0][0], images_highres=video_data[0][1], modalities=video_data[2], speech=speechs, speech_lengths=speech_lengths, speech_chunks=speech_chunks, speech_wav=speech_wavs, attention_mask=attention_masks, use_cache=True, stopping_criteria=[stopping_criteria], do_sample=True if gen_kwargs["temperature"] > 0 else False, temperature=gen_kwargs["temperature"], top_p=gen_kwargs["top_p"], num_beams=gen_kwargs["num_beams"], max_new_tokens=gen_kwargs["max_new_tokens"], ) else: output_ids = model.generate( inputs=input_ids, images=image_tensor, images_highres=image_highres_tensor, image_sizes=image_sizes, modalities=['image'], speech=speechs, speech_lengths=speech_lengths, speech_chunks=speech_chunks, speech_wav=speech_wavs, attention_mask=attention_masks, use_cache=True, stopping_criteria=[stopping_criteria], do_sample=True if gen_kwargs["temperature"] > 0 else False, temperature=gen_kwargs["temperature"], top_p=gen_kwargs["top_p"], num_beams=gen_kwargs["num_beams"], max_new_tokens=gen_kwargs["max_new_tokens"], ) outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0] outputs = outputs.strip() if outputs.endswith(stop_str): outputs = outputs[:-len(stop_str)] outputs = outputs.strip() if OUTPUT_SPEECH: voice_all = [] for i, j in enumerate(tts_model.inference_sft(outputs, '英文女', stream=False)): voice_all.append(j['tts_speech']) voice_all = torch.cat(voice_all, dim=1) torchaudio.save('sft.wav', voice_all, 22050) return outputs, "sft.wav" # else: return outputs, None # Define input and output for the Gradio interface demo = gr.Interface( fn=ola_inference, inputs=[gr.MultimodalTextbox(file_types=[".mp4", "image"],placeholder="Enter message or upload files...(Image or Video is required)"), gr.Audio(type="filepath")], outputs=["text", "audio"], title="Ola Demo", description=title_markdown, article=bibtext, ) # Launch the Gradio app demo.launch()