Ola / ola /mm_utils.py
dongyh20
update space
1938217
raw
history blame
9.72 kB
from PIL import Image
import base64
import math
import ast
import torch
from transformers import StoppingCriteria
import os
import io
if 'VIDEO_RESIZE' in os.environ:
# highresxpatch
VIDEO_RESIZE = os.environ['VIDEO_RESIZE']
video_base, video_ps = VIDEO_RESIZE.split('x')
video_base = int(video_base)
video_ps = int(video_ps)
print(f"VIDEO_RESIZE is set as {VIDEO_RESIZE}, {video_base}, {video_ps}")
else:
HIGHRES_BASE = None
if 'HIGHRES_BASE' in os.environ:
# highresxpatch
HIGHRES_BASE = os.environ['HIGHRES_BASE']
highres_base, highres_ps = HIGHRES_BASE.split('x')
highres_base = int(highres_base)
highres_ps = int(highres_ps)
print(f"HIGHRES_BASE is set as {HIGHRES_BASE}, {highres_base}, {highres_ps}")
else:
HIGHRES_BASE = None
if 'MAXRES' in os.environ:
# highresxpatch
MAXRES = int(os.environ['MAXRES'])
print(f"MAXRES is set as {MAXRES}")
else:
MAXRES = 1536
if 'MINRES' in os.environ:
# highresxpatch
MINRES = int(os.environ['MINRES'])
print(f"MINRES is set as {MINRES}")
else:
MINRES = 0
if 'VIDEO_MAXRES' in os.environ:
# highresxpatch
VIDEO_MAXRES = int(os.environ['VIDEO_MAXRES'])
print(f"VIDEO_MAXRES is set as {VIDEO_MAXRES}")
else:
VIDEO_MAXRES = 1536
if 'VIDEO_MINRES' in os.environ:
# highresxpatch
VIDEO_MINRES = int(os.environ['VIDEO_MINRES'])
print(f"VIDEO_MINRES is set as {VIDEO_MINRES}")
else:
MINRES = 0
if 'PAD2STRIDE' in os.environ:
# highresxpatch
PAD2STRIDE = True
print(f"PAD2STRIDE is set")
else:
PAD2STRIDE = False
if 'LOWRES_RESIZE' in os.environ:
LOWRES_RESIZE = os.environ['LOWRES_RESIZE']
print(f"LOWRES_RESIZE is set as {LOWRES_RESIZE}")
if 'x' in LOWRES_RESIZE:
size, ps = LOWRES_RESIZE.split('x')
size = int(size)
ps = int(ps)
LOWRES_RESIZE = (size, ps)
else:
LOWRES_RESIZE = int(LOWRES_RESIZE)
else:
LOWRES_RESIZE = None
def pad_image(image, target_resolution, value=0):
"""
Resize and pad an image to a target resolution while maintaining aspect ratio.
Args:
image (PIL.Image.Image): The input image.
target_resolution (tuple): The target resolution (width, height) of the image.
Returns:
PIL.Image.Image: The resized and padded image.
"""
original_width, original_height = image.size
target_width, target_height = target_resolution
# Create a new image with the target size and paste the resized image onto it
new_image = Image.new('RGB', (target_width, target_height), (value, value, value))
paste_x = (target_width - original_width) // 2
paste_y = (target_height - original_height) // 2
new_image.paste(image, (paste_x, paste_y))
return new_image
def resize_images(image, patch_size=14, base_size=896):
h, w = image.size
if base_size == 0:
if h * w > MAXRES * MAXRES:
# print(f'{h}x{w} larger than max size {MAXRES}, resize to {MAXRES}')
scale = MAXRES * MAXRES / (h * w)
scale = math.sqrt(scale)
elif h * w < MINRES * MINRES:
# print(f'{h}x{w} smaller than max size {MINRES}, resize to {MINRES}')
scale = MINRES * MINRES / (h * w)
scale = math.sqrt(scale)
else:
scale = None
else:
scale = base_size * base_size / (h * w)
scale = math.sqrt(scale)
if scale is not None:
new_h = int(h * scale / patch_size) * patch_size
new_w = int(w * scale / patch_size) * patch_size
new_h = max(new_h, patch_size)
new_w = max(new_w, patch_size)
image = image.resize((new_h, new_w))
elif PAD2STRIDE:
if h % patch_size == 0:
new_h = h
else:
new_h = (h // patch_size + 1) * patch_size
if w % patch_size == 0:
new_w = w
else:
new_w = (w // patch_size + 1) * patch_size
image = pad_image(image, (new_h, new_w), value=127)
else:
scale = 1.0
new_h = int(h * scale / patch_size) * patch_size
new_w = int(w * scale / patch_size) * patch_size
new_h = max(new_h, patch_size)
new_w = max(new_w, patch_size)
image = image.resize((new_h, new_w))
return image
def resize_video(image, patch_size=14, base_size=896):
h, w = image.size
if base_size == 0:
if h * w > VIDEO_MAXRES * VIDEO_MAXRES:
# print(f'{h}x{w} larger than max size {MAXRES}, resize to {MAXRES}')
scale = VIDEO_MAXRES * VIDEO_MAXRES / (h * w)
scale = math.sqrt(scale)
elif h * w < VIDEO_MINRES * VIDEO_MINRES:
# print(f'{h}x{w} smaller than max size {MINRES}, resize to {MINRES}')
scale = VIDEO_MINRES * VIDEO_MINRES / (h * w)
scale = math.sqrt(scale)
else:
scale = None
else:
scale = base_size * base_size / (h * w)
scale = math.sqrt(scale)
if scale is not None:
new_h = int(h * scale / patch_size) * patch_size
new_w = int(w * scale / patch_size) * patch_size
image = image.resize((new_h, new_w))
elif PAD2STRIDE:
if h % patch_size == 0:
new_h = h
else:
new_h = (h // patch_size + 1) * patch_size
if w % patch_size == 0:
new_w = w
else:
new_w = (w // patch_size + 1) * patch_size
image = pad_image(image, (new_h, new_w), value=127)
else:
scale = 1.0
new_h = int(h * scale / patch_size) * patch_size
new_w = int(w * scale / patch_size) * patch_size
image = image.resize((new_h, new_w))
return image
def process_anyres_video(image, processor):
if VIDEO_RESIZE is not None:
image = resize_video(image, patch_size=video_ps, base_size=video_base)
image = processor.preprocess(image, return_tensors='pt')['pixel_values'][0]
return image.unsqueeze(0)
else:
raise ValueError("VIDEO_RESIZE is not set")
def process_anyres_highres_image_genli(image, processor):
h, w = image.size
if h < 32 and w < 32:
min_size = min(h, w)
ratio = 64 / min_size
image = image.resize((int(h * ratio), int(w * ratio)))
elif h < 32:
ratio = 64 / h
image = image.resize((int(h * ratio), int(w * ratio)))
elif w < 32:
ratio = 64 / w
image = image.resize((int(h * ratio), int(w * ratio)))
if HIGHRES_BASE is not None:
image = resize_images(image, patch_size=highres_ps, base_size=highres_base)
if LOWRES_RESIZE is not None:
image_original_resize = resize_images(image, patch_size=LOWRES_RESIZE[1], base_size=LOWRES_RESIZE[0])
else:
image_original_resize = image.resize((384, 384))
# image_patches = [image_original_resize] + [image_original_resize]
# image_patches = [processor.preprocess(image_patch, return_tensors='pt')['pixel_values'][0]
# for image_patch in image_patches]
image_patches = processor.preprocess(image_original_resize, return_tensors='pt')['pixel_values'][0]
image_padded = processor.preprocess(image, return_tensors='pt')['pixel_values'][0]
# return torch.stack(image_patches, dim=0), image_padded.unsqueeze(0)
return image_patches.unsqueeze(0), image_padded.unsqueeze(0)
def read_image_patch(patch_info):
if 'img_path' in patch_info.keys():
image = Image.open(patch_info['img_path']).convert('RGB')
else:
if 'image_encoing' in patch_info.keys():
patch_info['image_encoding'] = patch_info['image_encoing']
image_file_name = patch_info['patch']
start_bytes = int(patch_info['start_num'])
file_size = int(patch_info['size'])
with open(image_file_name, 'rb') as f:
f.seek(start_bytes)
if 'image_encoding' in patch_info.keys() and patch_info['image_encoding'] == 'base64':
image = Image.open(io.BytesIO(base64.b64decode(f.read(file_size).decode()))).convert("RGB")
else:
image = Image.open(io.BytesIO(f.read(file_size))).convert("RGB")
return image
def get_model_name_from_path(model_path):
model_path = model_path.strip("/")
model_paths = model_path.split("/")
if model_paths[-1].startswith('checkpoint-'):
return model_paths[-2] + "_" + model_paths[-1]
else:
return model_paths[-1]
class KeywordsStoppingCriteria(StoppingCriteria):
def __init__(self, keywords, tokenizer, input_ids):
self.keywords = keywords
self.keyword_ids = []
for keyword in keywords:
cur_keyword_ids = tokenizer(keyword).input_ids
if len(cur_keyword_ids) > 1 and cur_keyword_ids[0] == tokenizer.bos_token_id:
cur_keyword_ids = cur_keyword_ids[1:]
self.keyword_ids.append(torch.tensor(cur_keyword_ids))
self.tokenizer = tokenizer
self.start_len = input_ids.shape[1]
def __call__(self, output_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
assert output_ids.shape[0] == 1, "Only support batch size 1 (yet)" # TODO
offset = min(output_ids.shape[1] - self.start_len, 3)
self.keyword_ids = [keyword_id.to(output_ids.device) for keyword_id in self.keyword_ids]
for keyword_id in self.keyword_ids:
if output_ids[0, -keyword_id.shape[0]:] == keyword_id:
return True
outputs = self.tokenizer.batch_decode(output_ids[:, -offset:], skip_special_tokens=True)[0]
for keyword in self.keywords:
if keyword in outputs:
return True
return False