Spaces:
Running
on
L40S
Running
on
L40S
Add video2video
Browse files
app.py
CHANGED
@@ -4,9 +4,16 @@ import random
|
|
4 |
import threading
|
5 |
import time
|
6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
import gradio as gr
|
8 |
import torch
|
9 |
-
from diffusers import CogVideoXPipeline, CogVideoXDDIMScheduler,CogVideoXDPMScheduler
|
|
|
10 |
from datetime import datetime, timedelta
|
11 |
|
12 |
from diffusers.image_processor import VaeImageProcessor
|
@@ -27,6 +34,8 @@ pipe.scheduler = CogVideoXDPMScheduler.from_config(pipe.scheduler.config, timest
|
|
27 |
pipe.transformer.to(memory_format=torch.channels_last)
|
28 |
pipe.transformer = torch.compile(pipe.transformer, mode="max-autotune", fullgraph=True)
|
29 |
|
|
|
|
|
30 |
os.makedirs("./output", exist_ok=True)
|
31 |
os.makedirs("./gradio_tmp", exist_ok=True)
|
32 |
|
@@ -46,6 +55,76 @@ Other times the user will not want modifications , but instead want a new image
|
|
46 |
Video descriptions must have the same num of words as examples below. Extra words will be ignored.
|
47 |
"""
|
48 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
|
50 |
def convert_prompt(prompt: str, retry_times: int = 3) -> str:
|
51 |
if not os.environ.get("OPENAI_API_KEY"):
|
@@ -96,9 +175,10 @@ def convert_prompt(prompt: str, retry_times: int = 3) -> str:
|
|
96 |
return response.choices[0].message.content
|
97 |
return prompt
|
98 |
|
99 |
-
|
100 |
def infer(
|
101 |
prompt: str,
|
|
|
|
|
102 |
num_inference_steps: int,
|
103 |
guidance_scale: float,
|
104 |
seed: int = -1,
|
@@ -106,16 +186,31 @@ def infer(
|
|
106 |
):
|
107 |
if seed == -1:
|
108 |
seed = random.randint(0, 2 ** 8 - 1)
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
119 |
|
120 |
return (video_pt, seed)
|
121 |
|
@@ -146,6 +241,7 @@ def delete_old_files():
|
|
146 |
|
147 |
|
148 |
threading.Thread(target=delete_old_files, daemon=True).start()
|
|
|
149 |
|
150 |
with gr.Blocks() as demo:
|
151 |
gr.Markdown("""
|
@@ -169,6 +265,11 @@ with gr.Blocks() as demo:
|
|
169 |
|
170 |
""")
|
171 |
with gr.Row():
|
|
|
|
|
|
|
|
|
|
|
172 |
with gr.Column():
|
173 |
prompt = gr.Textbox(label="Prompt (Less than 200 Words)", placeholder="Enter your prompt here", lines=5)
|
174 |
|
@@ -313,7 +414,12 @@ with gr.Blocks() as demo:
|
|
313 |
)
|
314 |
|
315 |
enhance_button.click(enhance_prompt_func, inputs=[prompt], outputs=[prompt])
|
316 |
-
|
|
|
|
|
|
|
|
|
|
|
317 |
if __name__ == "__main__":
|
318 |
demo.queue(max_size=15)
|
319 |
demo.launch()
|
|
|
4 |
import threading
|
5 |
import time
|
6 |
|
7 |
+
import cv2
|
8 |
+
import numpy as np
|
9 |
+
import tempfile
|
10 |
+
import imageio
|
11 |
+
import imageio_ffmpeg
|
12 |
+
|
13 |
import gradio as gr
|
14 |
import torch
|
15 |
+
from diffusers import CogVideoXPipeline, CogVideoXDDIMScheduler,CogVideoXDPMScheduler, CogVideoXVideoToVideoPipeline
|
16 |
+
from diffusers.utils import export_to_video, load_video
|
17 |
from datetime import datetime, timedelta
|
18 |
|
19 |
from diffusers.image_processor import VaeImageProcessor
|
|
|
34 |
pipe.transformer.to(memory_format=torch.channels_last)
|
35 |
pipe.transformer = torch.compile(pipe.transformer, mode="max-autotune", fullgraph=True)
|
36 |
|
37 |
+
pipe_video = CogVideoXVideoToVideoPipeline.from_pretrained("THUDM/CogVideoX-5b", transformer=pipe.transformer, vae=pipe.vae, scheduler=pipe.scheduler, tokenizer=pipe.tokenizer, text_encoder=pipe.text_encoder, torch_dtype=torch.bfloat16)
|
38 |
+
|
39 |
os.makedirs("./output", exist_ok=True)
|
40 |
os.makedirs("./gradio_tmp", exist_ok=True)
|
41 |
|
|
|
55 |
Video descriptions must have the same num of words as examples below. Extra words will be ignored.
|
56 |
"""
|
57 |
|
58 |
+
def get_video_dimensions(input_video_path):
|
59 |
+
reader = imageio_ffmpeg.read_frames(input_video_path)
|
60 |
+
metadata = next(reader)
|
61 |
+
return metadata['size']
|
62 |
+
|
63 |
+
def center_crop_resize(input_video_path, target_width=720, target_height=480):
|
64 |
+
# Open the video file
|
65 |
+
cap = cv2.VideoCapture(input_video_path)
|
66 |
+
|
67 |
+
# Get original video properties
|
68 |
+
orig_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
69 |
+
orig_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
70 |
+
orig_fps = cap.get(cv2.CAP_PROP_FPS)
|
71 |
+
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
72 |
+
|
73 |
+
# Calculate resize factor
|
74 |
+
width_factor = target_width / orig_width
|
75 |
+
height_factor = target_height / orig_height
|
76 |
+
resize_factor = max(width_factor, height_factor)
|
77 |
+
|
78 |
+
# Calculate intermediate size
|
79 |
+
inter_width = int(orig_width * resize_factor)
|
80 |
+
inter_height = int(orig_height * resize_factor)
|
81 |
+
|
82 |
+
# Calculate frame skip
|
83 |
+
target_fps = 8
|
84 |
+
ideal_skip = max(0, math.ceil(orig_fps / target_fps) - 1)
|
85 |
+
skip = min(5, ideal_skip) # Cap at 5
|
86 |
+
|
87 |
+
# Adjust skip if not enough frames
|
88 |
+
while (total_frames / (skip + 1)) < 49 and skip > 0:
|
89 |
+
skip -= 1
|
90 |
+
|
91 |
+
processed_frames = []
|
92 |
+
frame_count = 0
|
93 |
+
total_read = 0
|
94 |
+
|
95 |
+
while frame_count < 49 and total_read < total_frames:
|
96 |
+
ret, frame = cap.read()
|
97 |
+
if not ret:
|
98 |
+
break
|
99 |
+
|
100 |
+
if total_read % (skip + 1) == 0:
|
101 |
+
# Resize frame
|
102 |
+
resized = cv2.resize(frame, (inter_width, inter_height), interpolation=cv2.INTER_AREA)
|
103 |
+
|
104 |
+
# Center crop
|
105 |
+
start_x = (inter_width - target_width) // 2
|
106 |
+
start_y = (inter_height - target_height) // 2
|
107 |
+
cropped = resized[start_y:start_y+target_height, start_x:start_x+target_width]
|
108 |
+
|
109 |
+
processed_frames.append(cropped)
|
110 |
+
frame_count += 1
|
111 |
+
|
112 |
+
total_read += 1
|
113 |
+
|
114 |
+
cap.release()
|
115 |
+
|
116 |
+
# Save the processed video to a temporary file
|
117 |
+
with tempfile.NamedTemporaryFile(suffix='.mp4', delete=False) as temp_file:
|
118 |
+
temp_video_path = temp_file.name
|
119 |
+
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
120 |
+
out = cv2.VideoWriter(temp_video_path, fourcc, target_fps, (target_width, target_height))
|
121 |
+
|
122 |
+
for frame in processed_frames:
|
123 |
+
out.write(frame)
|
124 |
+
|
125 |
+
out.release()
|
126 |
+
|
127 |
+
return temp_video_path
|
128 |
|
129 |
def convert_prompt(prompt: str, retry_times: int = 3) -> str:
|
130 |
if not os.environ.get("OPENAI_API_KEY"):
|
|
|
175 |
return response.choices[0].message.content
|
176 |
return prompt
|
177 |
|
|
|
178 |
def infer(
|
179 |
prompt: str,
|
180 |
+
video_input: str,
|
181 |
+
video_strenght: float,
|
182 |
num_inference_steps: int,
|
183 |
guidance_scale: float,
|
184 |
seed: int = -1,
|
|
|
186 |
):
|
187 |
if seed == -1:
|
188 |
seed = random.randint(0, 2 ** 8 - 1)
|
189 |
+
if(video_input):
|
190 |
+
video = load_video(video_input)[:49] # Limit to 49 frames
|
191 |
+
video_pt = pipe(
|
192 |
+
video=video,
|
193 |
+
prompt=prompt,
|
194 |
+
num_inference_steps=num_inference_steps,
|
195 |
+
num_videos_per_prompt=1,
|
196 |
+
strength=video_strenght,
|
197 |
+
num_frames=49,
|
198 |
+
use_dynamic_cfg=True,
|
199 |
+
output_type="pt",
|
200 |
+
guidance_scale=guidance_scale,
|
201 |
+
generator=torch.Generator(device="cpu").manual_seed(seed),
|
202 |
+
).frames
|
203 |
+
else:
|
204 |
+
video_pt = pipe(
|
205 |
+
prompt=prompt,
|
206 |
+
num_videos_per_prompt=1,
|
207 |
+
num_inference_steps=num_inference_steps,
|
208 |
+
num_frames=49,
|
209 |
+
use_dynamic_cfg=True,
|
210 |
+
output_type="pt",
|
211 |
+
guidance_scale=guidance_scale,
|
212 |
+
generator=torch.Generator(device="cpu").manual_seed(seed),
|
213 |
+
).frames
|
214 |
|
215 |
return (video_pt, seed)
|
216 |
|
|
|
241 |
|
242 |
|
243 |
threading.Thread(target=delete_old_files, daemon=True).start()
|
244 |
+
examples = [["horse.mp4", "Pixel art of a horse running"]]
|
245 |
|
246 |
with gr.Blocks() as demo:
|
247 |
gr.Markdown("""
|
|
|
265 |
|
266 |
""")
|
267 |
with gr.Row():
|
268 |
+
with gr.Accordion("Video-to-video", open=False):
|
269 |
+
video_input = gr.Video(label="Input Video (will be cropped to 49 frames, 6 seconds at 8fps)")
|
270 |
+
strength = gr.Slider(0.1, 1.0, value=0.8, step=0.01, label="Strength")
|
271 |
+
examples_component = gr.Examples(examples, fn=process_video, inputs=[input_video, prompt], outputs=output_video, cache_examples="lazy")
|
272 |
+
examples_component.dataset._components = [input_video]
|
273 |
with gr.Column():
|
274 |
prompt = gr.Textbox(label="Prompt (Less than 200 Words)", placeholder="Enter your prompt here", lines=5)
|
275 |
|
|
|
414 |
)
|
415 |
|
416 |
enhance_button.click(enhance_prompt_func, inputs=[prompt], outputs=[prompt])
|
417 |
+
|
418 |
+
input_video.upload(
|
419 |
+
resize_if_unfit,
|
420 |
+
inputs=[input_video],
|
421 |
+
outputs=[input_video]
|
422 |
+
)
|
423 |
if __name__ == "__main__":
|
424 |
demo.queue(max_size=15)
|
425 |
demo.launch()
|