Spaces:
Runtime error
Runtime error
Visualize intermediate results
Browse files
app.py
CHANGED
@@ -42,8 +42,14 @@ with gr.Blocks(css='style.css') as demo:
|
|
42 |
step=0.1)
|
43 |
run_button = gr.Button('Run')
|
44 |
with gr.Column():
|
45 |
-
|
46 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
with gr.Row():
|
48 |
examples = [
|
49 |
['shapes/dragon1.obj', 'a photo of a dragon', 0, 7.5],
|
@@ -60,7 +66,7 @@ with gr.Blocks(css='style.css') as demo:
|
|
60 |
guidance_scale,
|
61 |
],
|
62 |
outputs=[
|
63 |
-
|
64 |
output_file,
|
65 |
],
|
66 |
cache_examples=False)
|
@@ -73,8 +79,10 @@ with gr.Blocks(css='style.css') as demo:
|
|
73 |
guidance_scale,
|
74 |
],
|
75 |
outputs=[
|
76 |
-
|
|
|
77 |
output_file,
|
|
|
78 |
])
|
79 |
|
80 |
demo.queue(max_size=5).launch(debug=True)
|
|
|
42 |
step=0.1)
|
43 |
run_button = gr.Button('Run')
|
44 |
with gr.Column():
|
45 |
+
progress_text = gr.Text(label='Progress')
|
46 |
+
with gr.Tabs():
|
47 |
+
with gr.TabItem(label='Images from each viewpoint'):
|
48 |
+
viewpoint_images = gr.Gallery(show_label=False)
|
49 |
+
with gr.TabItem(label='Result video'):
|
50 |
+
result_video = gr.Video(show_label=False)
|
51 |
+
with gr.TabItem(label='Output mesh file'):
|
52 |
+
output_file = gr.File(show_label=False)
|
53 |
with gr.Row():
|
54 |
examples = [
|
55 |
['shapes/dragon1.obj', 'a photo of a dragon', 0, 7.5],
|
|
|
66 |
guidance_scale,
|
67 |
],
|
68 |
outputs=[
|
69 |
+
result_video,
|
70 |
output_file,
|
71 |
],
|
72 |
cache_examples=False)
|
|
|
79 |
guidance_scale,
|
80 |
],
|
81 |
outputs=[
|
82 |
+
viewpoint_images,
|
83 |
+
result_video,
|
84 |
output_file,
|
85 |
+
progress_text,
|
86 |
])
|
87 |
|
88 |
demo.queue(max_size=5).launch(debug=True)
|
model.py
CHANGED
@@ -5,8 +5,10 @@ import pathlib
|
|
5 |
import shlex
|
6 |
import subprocess
|
7 |
import sys
|
|
|
8 |
|
9 |
import gradio as gr
|
|
|
10 |
|
11 |
sys.path.append('TEXTurePaper')
|
12 |
|
@@ -48,8 +50,9 @@ class Model:
|
|
48 |
subprocess.run(shlex.split(f'zip -r {out_path} {mesh_dir}'))
|
49 |
return out_path
|
50 |
|
51 |
-
def run(
|
52 |
-
|
|
|
53 |
if not shape_path.endswith('.obj'):
|
54 |
raise gr.Error('The input file is not .obj file.')
|
55 |
if not self.check_num_faces(shape_path):
|
@@ -57,7 +60,28 @@ class Model:
|
|
57 |
|
58 |
config = self.load_config(shape_path, text, seed, guidance_scale)
|
59 |
trainer = TEXTure(config)
|
60 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
video_path = config.log.exp_dir / 'results' / 'step_00010_rgb.mp4'
|
62 |
zip_path = self.zip_results(config.log.exp_dir)
|
63 |
-
|
|
|
5 |
import shlex
|
6 |
import subprocess
|
7 |
import sys
|
8 |
+
from typing import Generator
|
9 |
|
10 |
import gradio as gr
|
11 |
+
import tqdm
|
12 |
|
13 |
sys.path.append('TEXTurePaper')
|
14 |
|
|
|
50 |
subprocess.run(shlex.split(f'zip -r {out_path} {mesh_dir}'))
|
51 |
return out_path
|
52 |
|
53 |
+
def run(
|
54 |
+
self, shape_path: str, text: str, seed: int, guidance_scale: float
|
55 |
+
) -> Generator[tuple[list[str], str | None, str | None, str], None, None]:
|
56 |
if not shape_path.endswith('.obj'):
|
57 |
raise gr.Error('The input file is not .obj file.')
|
58 |
if not self.check_num_faces(shape_path):
|
|
|
60 |
|
61 |
config = self.load_config(shape_path, text, seed, guidance_scale)
|
62 |
trainer = TEXTure(config)
|
63 |
+
|
64 |
+
trainer.mesh_model.train()
|
65 |
+
|
66 |
+
total_steps = len(trainer.dataloaders['train'])
|
67 |
+
for step, data in enumerate(trainer.dataloaders['train'], start=1):
|
68 |
+
trainer.paint_step += 1
|
69 |
+
trainer.paint_viewpoint(data)
|
70 |
+
trainer.evaluate(trainer.dataloaders['val'],
|
71 |
+
trainer.eval_renders_path)
|
72 |
+
trainer.mesh_model.train()
|
73 |
+
|
74 |
+
sample_image_dir = config.log.exp_dir / 'vis' / 'eval'
|
75 |
+
sample_image_paths = sorted(
|
76 |
+
sample_image_dir.glob(f'step_{trainer.paint_step:05d}_*.jpg'))
|
77 |
+
sample_image_paths = [
|
78 |
+
path.as_posix() for path in sample_image_paths
|
79 |
+
]
|
80 |
+
yield sample_image_paths, None, None, f'{step}/{total_steps}'
|
81 |
+
|
82 |
+
trainer.mesh_model.change_default_to_median()
|
83 |
+
trainer.full_eval()
|
84 |
+
|
85 |
video_path = config.log.exp_dir / 'results' / 'step_00010_rgb.mp4'
|
86 |
zip_path = self.zip_results(config.log.exp_dir)
|
87 |
+
yield sample_image_paths, video_path.as_posix(), zip_path, 'Done!'
|