Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (c) 2023 Amphion. | |
# | |
# This source code is licensed under the MIT license found in the | |
# LICENSE file in the root directory of this source tree. | |
from modules.dac.nn.quantize import ResidualVectorQuantize | |
from torch import nn | |
from .wavenet import WN | |
from .style_encoder import StyleEncoder | |
from .gradient_reversal import GradientReversal | |
import torch | |
import torchaudio | |
import torchaudio.functional as audio_F | |
import numpy as np | |
from ..alias_free_torch import * | |
from torch.nn.utils import weight_norm | |
from torch import nn, sin, pow | |
from einops.layers.torch import Rearrange | |
from modules.dac.model.encodec import SConv1d | |
def init_weights(m): | |
if isinstance(m, nn.Conv1d): | |
nn.init.trunc_normal_(m.weight, std=0.02) | |
nn.init.constant_(m.bias, 0) | |
def WNConv1d(*args, **kwargs): | |
return weight_norm(nn.Conv1d(*args, **kwargs)) | |
def WNConvTranspose1d(*args, **kwargs): | |
return weight_norm(nn.ConvTranspose1d(*args, **kwargs)) | |
class SnakeBeta(nn.Module): | |
""" | |
A modified Snake function which uses separate parameters for the magnitude of the periodic components | |
Shape: | |
- Input: (B, C, T) | |
- Output: (B, C, T), same shape as the input | |
Parameters: | |
- alpha - trainable parameter that controls frequency | |
- beta - trainable parameter that controls magnitude | |
References: | |
- This activation function is a modified version based on this paper by Liu Ziyin, Tilman Hartwig, Masahito Ueda: | |
https://arxiv.org/abs/2006.08195 | |
Examples: | |
>>> a1 = snakebeta(256) | |
>>> x = torch.randn(256) | |
>>> x = a1(x) | |
""" | |
def __init__( | |
self, in_features, alpha=1.0, alpha_trainable=True, alpha_logscale=False | |
): | |
""" | |
Initialization. | |
INPUT: | |
- in_features: shape of the input | |
- alpha - trainable parameter that controls frequency | |
- beta - trainable parameter that controls magnitude | |
alpha is initialized to 1 by default, higher values = higher-frequency. | |
beta is initialized to 1 by default, higher values = higher-magnitude. | |
alpha will be trained along with the rest of your model. | |
""" | |
super(SnakeBeta, self).__init__() | |
self.in_features = in_features | |
# initialize alpha | |
self.alpha_logscale = alpha_logscale | |
if self.alpha_logscale: # log scale alphas initialized to zeros | |
self.alpha = nn.Parameter(torch.zeros(in_features) * alpha) | |
self.beta = nn.Parameter(torch.zeros(in_features) * alpha) | |
else: # linear scale alphas initialized to ones | |
self.alpha = nn.Parameter(torch.ones(in_features) * alpha) | |
self.beta = nn.Parameter(torch.ones(in_features) * alpha) | |
self.alpha.requires_grad = alpha_trainable | |
self.beta.requires_grad = alpha_trainable | |
self.no_div_by_zero = 0.000000001 | |
def forward(self, x): | |
""" | |
Forward pass of the function. | |
Applies the function to the input elementwise. | |
SnakeBeta := x + 1/b * sin^2 (xa) | |
""" | |
alpha = self.alpha.unsqueeze(0).unsqueeze(-1) # line up with x to [B, C, T] | |
beta = self.beta.unsqueeze(0).unsqueeze(-1) | |
if self.alpha_logscale: | |
alpha = torch.exp(alpha) | |
beta = torch.exp(beta) | |
x = x + (1.0 / (beta + self.no_div_by_zero)) * pow(sin(x * alpha), 2) | |
return x | |
class ResidualUnit(nn.Module): | |
def __init__(self, dim: int = 16, dilation: int = 1): | |
super().__init__() | |
pad = ((7 - 1) * dilation) // 2 | |
self.block = nn.Sequential( | |
Activation1d(activation=SnakeBeta(dim, alpha_logscale=True)), | |
WNConv1d(dim, dim, kernel_size=7, dilation=dilation, padding=pad), | |
Activation1d(activation=SnakeBeta(dim, alpha_logscale=True)), | |
WNConv1d(dim, dim, kernel_size=1), | |
) | |
def forward(self, x): | |
return x + self.block(x) | |
class CNNLSTM(nn.Module): | |
def __init__(self, indim, outdim, head, global_pred=False): | |
super().__init__() | |
self.global_pred = global_pred | |
self.model = nn.Sequential( | |
ResidualUnit(indim, dilation=1), | |
ResidualUnit(indim, dilation=2), | |
ResidualUnit(indim, dilation=3), | |
Activation1d(activation=SnakeBeta(indim, alpha_logscale=True)), | |
Rearrange("b c t -> b t c"), | |
) | |
self.heads = nn.ModuleList([nn.Linear(indim, outdim) for i in range(head)]) | |
def forward(self, x): | |
# x: [B, C, T] | |
x = self.model(x) | |
if self.global_pred: | |
x = torch.mean(x, dim=1, keepdim=False) | |
outs = [head(x) for head in self.heads] | |
return outs | |
def sequence_mask(length, max_length=None): | |
if max_length is None: | |
max_length = length.max() | |
x = torch.arange(max_length, dtype=length.dtype, device=length.device) | |
return x.unsqueeze(0) < length.unsqueeze(1) | |
class MFCC(nn.Module): | |
def __init__(self, n_mfcc=40, n_mels=80): | |
super(MFCC, self).__init__() | |
self.n_mfcc = n_mfcc | |
self.n_mels = n_mels | |
self.norm = "ortho" | |
dct_mat = audio_F.create_dct(self.n_mfcc, self.n_mels, self.norm) | |
self.register_buffer("dct_mat", dct_mat) | |
def forward(self, mel_specgram): | |
if len(mel_specgram.shape) == 2: | |
mel_specgram = mel_specgram.unsqueeze(0) | |
unsqueezed = True | |
else: | |
unsqueezed = False | |
# (channel, n_mels, time).tranpose(...) dot (n_mels, n_mfcc) | |
# -> (channel, time, n_mfcc).tranpose(...) | |
mfcc = torch.matmul(mel_specgram.transpose(1, 2), self.dct_mat).transpose(1, 2) | |
# unpack batch | |
if unsqueezed: | |
mfcc = mfcc.squeeze(0) | |
return mfcc | |
class FAquantizer(nn.Module): | |
def __init__( | |
self, | |
in_dim=1024, | |
n_p_codebooks=1, | |
n_c_codebooks=2, | |
n_t_codebooks=2, | |
n_r_codebooks=3, | |
codebook_size=1024, | |
codebook_dim=8, | |
quantizer_dropout=0.5, | |
causal=False, | |
separate_prosody_encoder=False, | |
timbre_norm=False, | |
): | |
super(FAquantizer, self).__init__() | |
conv1d_type = SConv1d # if causal else nn.Conv1d | |
self.prosody_quantizer = ResidualVectorQuantize( | |
input_dim=in_dim, | |
n_codebooks=n_p_codebooks, | |
codebook_size=codebook_size, | |
codebook_dim=codebook_dim, | |
quantizer_dropout=quantizer_dropout, | |
) | |
self.content_quantizer = ResidualVectorQuantize( | |
input_dim=in_dim, | |
n_codebooks=n_c_codebooks, | |
codebook_size=codebook_size, | |
codebook_dim=codebook_dim, | |
quantizer_dropout=quantizer_dropout, | |
) | |
if not timbre_norm: | |
self.timbre_quantizer = ResidualVectorQuantize( | |
input_dim=in_dim, | |
n_codebooks=n_t_codebooks, | |
codebook_size=codebook_size, | |
codebook_dim=codebook_dim, | |
quantizer_dropout=quantizer_dropout, | |
) | |
else: | |
self.timbre_encoder = StyleEncoder( | |
in_dim=80, hidden_dim=512, out_dim=in_dim | |
) | |
self.timbre_linear = nn.Linear(1024, 1024 * 2) | |
self.timbre_linear.bias.data[:1024] = 1 | |
self.timbre_linear.bias.data[1024:] = 0 | |
self.timbre_norm = nn.LayerNorm(1024, elementwise_affine=False) | |
self.residual_quantizer = ResidualVectorQuantize( | |
input_dim=in_dim, | |
n_codebooks=n_r_codebooks, | |
codebook_size=codebook_size, | |
codebook_dim=codebook_dim, | |
quantizer_dropout=quantizer_dropout, | |
) | |
if separate_prosody_encoder: | |
self.melspec_linear = conv1d_type( | |
in_channels=20, out_channels=256, kernel_size=1, causal=causal | |
) | |
self.melspec_encoder = WN( | |
hidden_channels=256, | |
kernel_size=5, | |
dilation_rate=1, | |
n_layers=8, | |
gin_channels=0, | |
p_dropout=0.2, | |
causal=causal, | |
) | |
self.melspec_linear2 = conv1d_type( | |
in_channels=256, out_channels=1024, kernel_size=1, causal=causal | |
) | |
else: | |
pass | |
self.separate_prosody_encoder = separate_prosody_encoder | |
self.prob_random_mask_residual = 0.75 | |
SPECT_PARAMS = { | |
"n_fft": 2048, | |
"win_length": 1200, | |
"hop_length": 300, | |
} | |
MEL_PARAMS = { | |
"n_mels": 80, | |
} | |
self.to_mel = torchaudio.transforms.MelSpectrogram( | |
n_mels=MEL_PARAMS["n_mels"], sample_rate=24000, **SPECT_PARAMS | |
) | |
self.mel_mean, self.mel_std = -4, 4 | |
self.frame_rate = 24000 / 300 | |
self.hop_length = 300 | |
self.is_timbre_norm = timbre_norm | |
if timbre_norm: | |
self.forward = self.forward_v2 | |
def preprocess(self, wave_tensor, n_bins=20): | |
mel_tensor = self.to_mel(wave_tensor.squeeze(1)) | |
mel_tensor = (torch.log(1e-5 + mel_tensor) - self.mel_mean) / self.mel_std | |
return mel_tensor[:, :n_bins, : int(wave_tensor.size(-1) / self.hop_length)] | |
def decode(self, codes): | |
code_c, code_p, code_t = codes.split([1, 1, 2], dim=1) | |
z_c = self.content_quantizer.from_codes(code_c)[0] | |
z_p = self.prosody_quantizer.from_codes(code_p)[0] | |
z_t = self.timbre_quantizer.from_codes(code_t)[0] | |
z = z_c + z_p + z_t | |
return z, [z_c, z_p, z_t] | |
def encode(self, x, wave_segments, n_c=1): | |
outs = 0 | |
if self.separate_prosody_encoder: | |
prosody_feature = self.preprocess(wave_segments) | |
f0_input = prosody_feature # (B, T, 20) | |
f0_input = self.melspec_linear(f0_input) | |
f0_input = self.melspec_encoder( | |
f0_input, | |
torch.ones(f0_input.shape[0], 1, f0_input.shape[2]) | |
.to(f0_input.device) | |
.bool(), | |
) | |
f0_input = self.melspec_linear2(f0_input) | |
common_min_size = min(f0_input.size(2), x.size(2)) | |
f0_input = f0_input[:, :, :common_min_size] | |
x = x[:, :, :common_min_size] | |
( | |
z_p, | |
codes_p, | |
latents_p, | |
commitment_loss_p, | |
codebook_loss_p, | |
) = self.prosody_quantizer(f0_input, 1) | |
outs += z_p.detach() | |
else: | |
( | |
z_p, | |
codes_p, | |
latents_p, | |
commitment_loss_p, | |
codebook_loss_p, | |
) = self.prosody_quantizer(x, 1) | |
outs += z_p.detach() | |
( | |
z_c, | |
codes_c, | |
latents_c, | |
commitment_loss_c, | |
codebook_loss_c, | |
) = self.content_quantizer(x, n_c) | |
outs += z_c.detach() | |
timbre_residual_feature = x - z_p.detach() - z_c.detach() | |
( | |
z_t, | |
codes_t, | |
latents_t, | |
commitment_loss_t, | |
codebook_loss_t, | |
) = self.timbre_quantizer(timbre_residual_feature, 2) | |
outs += z_t # we should not detach timbre | |
residual_feature = timbre_residual_feature - z_t | |
( | |
z_r, | |
codes_r, | |
latents_r, | |
commitment_loss_r, | |
codebook_loss_r, | |
) = self.residual_quantizer(residual_feature, 3) | |
return [codes_c, codes_p, codes_t, codes_r], [z_c, z_p, z_t, z_r] | |
def forward( | |
self, x, wave_segments, noise_added_flags, recon_noisy_flags, n_c=2, n_t=2 | |
): | |
# timbre = self.timbre_encoder(mels, sequence_mask(mel_lens, mels.size(-1)).unsqueeze(1)) | |
# timbre = self.timbre_encoder(mel_segments, torch.ones(mel_segments.size(0), 1, mel_segments.size(2)).bool().to(mel_segments.device)) | |
outs = 0 | |
if self.separate_prosody_encoder: | |
prosody_feature = self.preprocess(wave_segments) | |
f0_input = prosody_feature # (B, T, 20) | |
f0_input = self.melspec_linear(f0_input) | |
f0_input = self.melspec_encoder( | |
f0_input, | |
torch.ones(f0_input.shape[0], 1, f0_input.shape[2]) | |
.to(f0_input.device) | |
.bool(), | |
) | |
f0_input = self.melspec_linear2(f0_input) | |
common_min_size = min(f0_input.size(2), x.size(2)) | |
f0_input = f0_input[:, :, :common_min_size] | |
x = x[:, :, :common_min_size] | |
( | |
z_p, | |
codes_p, | |
latents_p, | |
commitment_loss_p, | |
codebook_loss_p, | |
) = self.prosody_quantizer(f0_input, 1) | |
outs += z_p.detach() | |
else: | |
( | |
z_p, | |
codes_p, | |
latents_p, | |
commitment_loss_p, | |
codebook_loss_p, | |
) = self.prosody_quantizer(x, 1) | |
outs += z_p.detach() | |
( | |
z_c, | |
codes_c, | |
latents_c, | |
commitment_loss_c, | |
codebook_loss_c, | |
) = self.content_quantizer(x, n_c) | |
outs += z_c.detach() | |
timbre_residual_feature = x - z_p.detach() - z_c.detach() | |
( | |
z_t, | |
codes_t, | |
latents_t, | |
commitment_loss_t, | |
codebook_loss_t, | |
) = self.timbre_quantizer(timbre_residual_feature, n_t) | |
outs += z_t # we should not detach timbre | |
residual_feature = timbre_residual_feature - z_t | |
( | |
z_r, | |
codes_r, | |
latents_r, | |
commitment_loss_r, | |
codebook_loss_r, | |
) = self.residual_quantizer(residual_feature, 3) | |
bsz = z_r.shape[0] | |
res_mask = np.random.choice( | |
[0, 1], | |
size=bsz, | |
p=[ | |
self.prob_random_mask_residual, | |
1 - self.prob_random_mask_residual, | |
], | |
) | |
res_mask = torch.from_numpy(res_mask).unsqueeze(1).unsqueeze(1) # (B, 1, 1) | |
res_mask = res_mask.to(device=z_r.device, dtype=z_r.dtype) | |
noise_must_on = noise_added_flags * recon_noisy_flags | |
noise_must_off = noise_added_flags * (~recon_noisy_flags) | |
res_mask[noise_must_on] = 1 | |
res_mask[noise_must_off] = 0 | |
outs += z_r * res_mask | |
quantized = [z_p, z_c, z_t, z_r] | |
commitment_losses = ( | |
commitment_loss_p | |
+ commitment_loss_c | |
+ commitment_loss_t | |
+ commitment_loss_r | |
) | |
codebook_losses = ( | |
codebook_loss_p + codebook_loss_c + codebook_loss_t + codebook_loss_r | |
) | |
return outs, quantized, commitment_losses, codebook_losses | |
def forward_v2( | |
self, | |
x, | |
wave_segments, | |
n_c=1, | |
n_t=2, | |
full_waves=None, | |
wave_lens=None, | |
return_codes=False, | |
): | |
# timbre = self.timbre_encoder(x, sequence_mask(mel_lens, mels.size(-1)).unsqueeze(1)) | |
if full_waves is None: | |
mel = self.preprocess(wave_segments, n_bins=80) | |
timbre = self.timbre_encoder( | |
mel, torch.ones(mel.size(0), 1, mel.size(2)).bool().to(mel.device) | |
) | |
else: | |
mel = self.preprocess(full_waves, n_bins=80) | |
timbre = self.timbre_encoder( | |
mel, | |
sequence_mask(wave_lens // self.hop_length, mel.size(-1)).unsqueeze(1), | |
) | |
outs = 0 | |
if self.separate_prosody_encoder: | |
prosody_feature = self.preprocess(wave_segments) | |
f0_input = prosody_feature # (B, T, 20) | |
f0_input = self.melspec_linear(f0_input) | |
f0_input = self.melspec_encoder( | |
f0_input, | |
torch.ones(f0_input.shape[0], 1, f0_input.shape[2]) | |
.to(f0_input.device) | |
.bool(), | |
) | |
f0_input = self.melspec_linear2(f0_input) | |
common_min_size = min(f0_input.size(2), x.size(2)) | |
f0_input = f0_input[:, :, :common_min_size] | |
x = x[:, :, :common_min_size] | |
( | |
z_p, | |
codes_p, | |
latents_p, | |
commitment_loss_p, | |
codebook_loss_p, | |
) = self.prosody_quantizer(f0_input, 1) | |
outs += z_p.detach() | |
else: | |
( | |
z_p, | |
codes_p, | |
latents_p, | |
commitment_loss_p, | |
codebook_loss_p, | |
) = self.prosody_quantizer(x, 1) | |
outs += z_p.detach() | |
( | |
z_c, | |
codes_c, | |
latents_c, | |
commitment_loss_c, | |
codebook_loss_c, | |
) = self.content_quantizer(x, n_c) | |
outs += z_c.detach() | |
residual_feature = x - z_p.detach() - z_c.detach() | |
( | |
z_r, | |
codes_r, | |
latents_r, | |
commitment_loss_r, | |
codebook_loss_r, | |
) = self.residual_quantizer(residual_feature, 3) | |
bsz = z_r.shape[0] | |
res_mask = np.random.choice( | |
[0, 1], | |
size=bsz, | |
p=[ | |
self.prob_random_mask_residual, | |
1 - self.prob_random_mask_residual, | |
], | |
) | |
res_mask = torch.from_numpy(res_mask).unsqueeze(1).unsqueeze(1) # (B, 1, 1) | |
res_mask = res_mask.to(device=z_r.device, dtype=z_r.dtype) | |
if not self.training: | |
res_mask = torch.ones_like(res_mask) | |
outs += z_r * res_mask | |
quantized = [z_p, z_c, z_r] | |
codes = [codes_p, codes_c, codes_r] | |
commitment_losses = commitment_loss_p + commitment_loss_c + commitment_loss_r | |
codebook_losses = codebook_loss_p + codebook_loss_c + codebook_loss_r | |
style = self.timbre_linear(timbre).unsqueeze(2) # (B, 2d, 1) | |
gamma, beta = style.chunk(2, 1) # (B, d, 1) | |
outs = outs.transpose(1, 2) | |
outs = self.timbre_norm(outs) | |
outs = outs.transpose(1, 2) | |
outs = outs * gamma + beta | |
if return_codes: | |
return outs, quantized, commitment_losses, codebook_losses, timbre, codes | |
else: | |
return outs, quantized, commitment_losses, codebook_losses, timbre | |
def voice_conversion(self, z, ref_wave): | |
ref_mel = self.preprocess(ref_wave, n_bins=80) | |
ref_timbre = self.timbre_encoder( | |
ref_mel, | |
sequence_mask( | |
torch.LongTensor([ref_wave.size(-1)]).to(z.device) // self.hop_length, | |
ref_mel.size(-1), | |
).unsqueeze(1), | |
) | |
style = self.timbre_linear(ref_timbre).unsqueeze(2) # (B, 2d, 1) | |
gamma, beta = style.chunk(2, 1) # (B, d, 1) | |
outs = z.transpose(1, 2) | |
outs = self.timbre_norm(outs) | |
outs = outs.transpose(1, 2) | |
outs = outs * gamma + beta | |
return outs | |
class FApredictors(nn.Module): | |
def __init__( | |
self, | |
in_dim=1024, | |
use_gr_content_f0=False, | |
use_gr_prosody_phone=False, | |
use_gr_residual_f0=False, | |
use_gr_residual_phone=False, | |
use_gr_timbre_content=True, | |
use_gr_timbre_prosody=True, | |
use_gr_x_timbre=False, | |
norm_f0=True, | |
timbre_norm=False, | |
use_gr_content_global_f0=False, | |
): | |
super(FApredictors, self).__init__() | |
self.f0_predictor = CNNLSTM(in_dim, 1, 2) | |
self.phone_predictor = CNNLSTM(in_dim, 1024, 1) | |
if timbre_norm: | |
self.timbre_predictor = nn.Linear(in_dim, 20000) | |
else: | |
self.timbre_predictor = CNNLSTM(in_dim, 20000, 1, global_pred=True) | |
self.use_gr_content_f0 = use_gr_content_f0 | |
self.use_gr_prosody_phone = use_gr_prosody_phone | |
self.use_gr_residual_f0 = use_gr_residual_f0 | |
self.use_gr_residual_phone = use_gr_residual_phone | |
self.use_gr_timbre_content = use_gr_timbre_content | |
self.use_gr_timbre_prosody = use_gr_timbre_prosody | |
self.use_gr_x_timbre = use_gr_x_timbre | |
self.rev_f0_predictor = nn.Sequential( | |
GradientReversal(alpha=1.0), CNNLSTM(in_dim, 1, 2) | |
) | |
self.rev_content_predictor = nn.Sequential( | |
GradientReversal(alpha=1.0), CNNLSTM(in_dim, 1024, 1) | |
) | |
self.rev_timbre_predictor = nn.Sequential( | |
GradientReversal(alpha=1.0), CNNLSTM(in_dim, 20000, 1, global_pred=True) | |
) | |
self.norm_f0 = norm_f0 | |
self.timbre_norm = timbre_norm | |
if timbre_norm: | |
self.forward = self.forward_v2 | |
self.global_f0_predictor = nn.Linear(in_dim, 1) | |
self.use_gr_content_global_f0 = use_gr_content_global_f0 | |
if use_gr_content_global_f0: | |
self.rev_global_f0_predictor = nn.Sequential( | |
GradientReversal(alpha=1.0), CNNLSTM(in_dim, 1, 1, global_pred=True) | |
) | |
def forward(self, quantized): | |
prosody_latent = quantized[0] | |
content_latent = quantized[1] | |
timbre_latent = quantized[2] | |
residual_latent = quantized[3] | |
content_pred = self.phone_predictor(content_latent)[0] | |
if self.norm_f0: | |
spk_pred = self.timbre_predictor(timbre_latent)[0] | |
f0_pred, uv_pred = self.f0_predictor(prosody_latent) | |
else: | |
spk_pred = self.timbre_predictor(timbre_latent + prosody_latent)[0] | |
f0_pred, uv_pred = self.f0_predictor(prosody_latent + timbre_latent) | |
prosody_rev_latent = torch.zeros_like(quantized[0]) | |
if self.use_gr_content_f0: | |
prosody_rev_latent += quantized[1] | |
if self.use_gr_timbre_prosody: | |
prosody_rev_latent += quantized[2] | |
if self.use_gr_residual_f0: | |
prosody_rev_latent += quantized[3] | |
rev_f0_pred, rev_uv_pred = self.rev_f0_predictor(prosody_rev_latent) | |
content_rev_latent = torch.zeros_like(quantized[1]) | |
if self.use_gr_prosody_phone: | |
content_rev_latent += quantized[0] | |
if self.use_gr_timbre_content: | |
content_rev_latent += quantized[2] | |
if self.use_gr_residual_phone: | |
content_rev_latent += quantized[3] | |
rev_content_pred = self.rev_content_predictor(content_rev_latent)[0] | |
if self.norm_f0: | |
timbre_rev_latent = quantized[0] + quantized[1] + quantized[3] | |
else: | |
timbre_rev_latent = quantized[1] + quantized[3] | |
if self.use_gr_x_timbre: | |
x_spk_pred = self.rev_timbre_predictor(timbre_rev_latent)[0] | |
else: | |
x_spk_pred = None | |
preds = { | |
"f0": f0_pred, | |
"uv": uv_pred, | |
"content": content_pred, | |
"timbre": spk_pred, | |
} | |
rev_preds = { | |
"rev_f0": rev_f0_pred, | |
"rev_uv": rev_uv_pred, | |
"rev_content": rev_content_pred, | |
"x_timbre": x_spk_pred, | |
} | |
return preds, rev_preds | |
def forward_v2(self, quantized, timbre): | |
prosody_latent = quantized[0] | |
content_latent = quantized[1] | |
residual_latent = quantized[2] | |
content_pred = self.phone_predictor(content_latent)[0] | |
spk_pred = self.timbre_predictor(timbre) | |
f0_pred, uv_pred = self.f0_predictor(prosody_latent) | |
prosody_rev_latent = torch.zeros_like(prosody_latent) | |
if self.use_gr_content_f0: | |
prosody_rev_latent += content_latent | |
if self.use_gr_residual_f0: | |
prosody_rev_latent += residual_latent | |
rev_f0_pred, rev_uv_pred = self.rev_f0_predictor(prosody_rev_latent) | |
content_rev_latent = torch.zeros_like(content_latent) | |
if self.use_gr_prosody_phone: | |
content_rev_latent += prosody_latent | |
if self.use_gr_residual_phone: | |
content_rev_latent += residual_latent | |
rev_content_pred = self.rev_content_predictor(content_rev_latent)[0] | |
timbre_rev_latent = prosody_latent + content_latent + residual_latent | |
if self.use_gr_x_timbre: | |
x_spk_pred = self.rev_timbre_predictor(timbre_rev_latent)[0] | |
else: | |
x_spk_pred = None | |
preds = { | |
"f0": f0_pred, | |
"uv": uv_pred, | |
"content": content_pred, | |
"timbre": spk_pred, | |
} | |
rev_preds = { | |
"rev_f0": rev_f0_pred, | |
"rev_uv": rev_uv_pred, | |
"rev_content": rev_content_pred, | |
"x_timbre": x_spk_pred, | |
} | |
return preds, rev_preds | |