Spaces:
Running
on
Zero
Running
on
Zero
# This module is from [WeNet](https://github.com/wenet-e2e/wenet). | |
# ## Citations | |
# ```bibtex | |
# @inproceedings{yao2021wenet, | |
# title={WeNet: Production oriented Streaming and Non-streaming End-to-End Speech Recognition Toolkit}, | |
# author={Yao, Zhuoyuan and Wu, Di and Wang, Xiong and Zhang, Binbin and Yu, Fan and Yang, Chao and Peng, Zhendong and Chen, Xiaoyu and Xie, Lei and Lei, Xin}, | |
# booktitle={Proc. Interspeech}, | |
# year={2021}, | |
# address={Brno, Czech Republic }, | |
# organization={IEEE} | |
# } | |
# @article{zhang2022wenet, | |
# title={WeNet 2.0: More Productive End-to-End Speech Recognition Toolkit}, | |
# author={Zhang, Binbin and Wu, Di and Peng, Zhendong and Song, Xingchen and Yao, Zhuoyuan and Lv, Hang and Xie, Lei and Yang, Chao and Pan, Fuping and Niu, Jianwei}, | |
# journal={arXiv preprint arXiv:2203.15455}, | |
# year={2022} | |
# } | |
# | |
"""ScorerInterface implementation for CTC.""" | |
import numpy as np | |
import torch | |
from modules.wenet_extractor.paraformer.search.ctc_prefix_score import CTCPrefixScore | |
from modules.wenet_extractor.paraformer.search.ctc_prefix_score import CTCPrefixScoreTH | |
from modules.wenet_extractor.paraformer.search.scorer_interface import ( | |
BatchPartialScorerInterface, | |
) | |
class CTCPrefixScorer(BatchPartialScorerInterface): | |
"""Decoder interface wrapper for CTCPrefixScore.""" | |
def __init__(self, ctc: torch.nn.Module, eos: int): | |
"""Initialize class. | |
Args: | |
ctc (torch.nn.Module): The CTC implementation. | |
For example, :class:`espnet.nets.pytorch_backend.ctc.CTC` | |
eos (int): The end-of-sequence id. | |
""" | |
self.ctc = ctc | |
self.eos = eos | |
self.impl = None | |
def init_state(self, x: torch.Tensor): | |
"""Get an initial state for decoding. | |
Args: | |
x (torch.Tensor): The encoded feature tensor | |
Returns: initial state | |
""" | |
logp = self.ctc.log_softmax(x.unsqueeze(0)).detach().squeeze(0).cpu().numpy() | |
# TODO(karita): use CTCPrefixScoreTH | |
self.impl = CTCPrefixScore(logp, 0, self.eos, np) | |
return 0, self.impl.initial_state() | |
def select_state(self, state, i, new_id=None): | |
"""Select state with relative ids in the main beam search. | |
Args: | |
state: Decoder state for prefix tokens | |
i (int): Index to select a state in the main beam search | |
new_id (int): New label id to select a state if necessary | |
Returns: | |
state: pruned state | |
""" | |
if type(state) == tuple: | |
if len(state) == 2: # for CTCPrefixScore | |
sc, st = state | |
return sc[i], st[i] | |
else: # for CTCPrefixScoreTH (need new_id > 0) | |
r, log_psi, f_min, f_max, scoring_idmap = state | |
s = log_psi[i, new_id].expand(log_psi.size(1)) | |
if scoring_idmap is not None: | |
return r[:, :, i, scoring_idmap[i, new_id]], s, f_min, f_max | |
else: | |
return r[:, :, i, new_id], s, f_min, f_max | |
return None if state is None else state[i] | |
def score_partial(self, y, ids, state, x): | |
"""Score new token. | |
Args: | |
y (torch.Tensor): 1D prefix token | |
next_tokens (torch.Tensor): torch.int64 next token to score | |
state: decoder state for prefix tokens | |
x (torch.Tensor): 2D encoder feature that generates ys | |
Returns: | |
tuple[torch.Tensor, Any]: | |
Tuple of a score tensor for y that has a shape | |
`(len(next_tokens),)` and next state for ys | |
""" | |
prev_score, state = state | |
presub_score, new_st = self.impl(y.cpu(), ids.cpu(), state) | |
tscore = torch.as_tensor( | |
presub_score - prev_score, device=x.device, dtype=x.dtype | |
) | |
return tscore, (presub_score, new_st) | |
def batch_init_state(self, x: torch.Tensor): | |
"""Get an initial state for decoding. | |
Args: | |
x (torch.Tensor): The encoded feature tensor | |
Returns: initial state | |
""" | |
logp = self.ctc.log_softmax(x.unsqueeze(0)) # assuming batch_size = 1 | |
xlen = torch.tensor([logp.size(1)]) | |
self.impl = CTCPrefixScoreTH(logp, xlen, 0, self.eos) | |
return None | |
def batch_score_partial(self, y, ids, state, x): | |
"""Score new token. | |
Args: | |
y (torch.Tensor): 1D prefix token | |
ids (torch.Tensor): torch.int64 next token to score | |
state: decoder state for prefix tokens | |
x (torch.Tensor): 2D encoder feature that generates ys | |
Returns: | |
tuple[torch.Tensor, Any]: | |
Tuple of a score tensor for y that has a shape | |
`(len(next_tokens),)` and next state for ys | |
""" | |
batch_state = ( | |
( | |
torch.stack([s[0] for s in state], dim=2), | |
torch.stack([s[1] for s in state]), | |
state[0][2], | |
state[0][3], | |
) | |
if state[0] is not None | |
else None | |
) | |
return self.impl(y, batch_state, ids) | |
def extend_prob(self, x: torch.Tensor): | |
"""Extend probs for decoding. | |
This extension is for streaming decoding | |
as in Eq (14) in https://arxiv.org/abs/2006.14941 | |
Args: | |
x (torch.Tensor): The encoded feature tensor | |
""" | |
logp = self.ctc.log_softmax(x.unsqueeze(0)) | |
self.impl.extend_prob(logp) | |
def extend_state(self, state): | |
"""Extend state for decoding. | |
This extension is for streaming decoding | |
as in Eq (14) in https://arxiv.org/abs/2006.14941 | |
Args: | |
state: The states of hyps | |
Returns: exteded state | |
""" | |
new_state = [] | |
for s in state: | |
new_state.append(self.impl.extend_state(s)) | |
return new_state | |