Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (c) 2023 Amphion. | |
# | |
# This source code is licensed under the MIT license found in the | |
# LICENSE file in the root directory of this source tree. | |
from typing import Union | |
import numpy as np | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from einops import rearrange | |
from torch.nn.utils import weight_norm | |
class FactorizedVectorQuantize(nn.Module): | |
def __init__(self, dim, codebook_size, codebook_dim, commitment, **kwargs): | |
super().__init__() | |
self.codebook_size = codebook_size | |
self.codebook_dim = codebook_dim | |
self.commitment = commitment | |
if dim != self.codebook_dim: | |
self.in_proj = weight_norm(nn.Linear(dim, self.codebook_dim)) | |
self.out_proj = weight_norm(nn.Linear(self.codebook_dim, dim)) | |
else: | |
self.in_proj = nn.Identity() | |
self.out_proj = nn.Identity() | |
self._codebook = nn.Embedding(codebook_size, self.codebook_dim) | |
def codebook(self): | |
return self._codebook | |
def forward(self, z): | |
"""Quantized the input tensor using a fixed codebook and returns | |
the corresponding codebook vectors | |
Parameters | |
---------- | |
z : Tensor[B x D x T] | |
Returns | |
------- | |
Tensor[B x D x T] | |
Quantized continuous representation of input | |
Tensor[1] | |
Commitment loss to train encoder to predict vectors closer to codebook | |
entries | |
Tensor[1] | |
Codebook loss to update the codebook | |
Tensor[B x T] | |
Codebook indices (quantized discrete representation of input) | |
Tensor[B x D x T] | |
Projected latents (continuous representation of input before quantization) | |
""" | |
# transpose since we use linear | |
z = rearrange(z, "b d t -> b t d") | |
# Factorized codes project input into low-dimensional space | |
z_e = self.in_proj(z) # z_e : (B x T x D) | |
z_e = rearrange(z_e, "b t d -> b d t") | |
z_q, indices = self.decode_latents(z_e) | |
if self.training: | |
commitment_loss = ( | |
F.mse_loss(z_e, z_q.detach(), reduction="none").mean([1, 2]) | |
* self.commitment | |
) | |
codebook_loss = F.mse_loss(z_q, z_e.detach(), reduction="none").mean([1, 2]) | |
commit_loss = commitment_loss + codebook_loss | |
else: | |
commit_loss = torch.zeros(z.shape[0], device=z.device) | |
z_q = ( | |
z_e + (z_q - z_e).detach() | |
) # noop in forward pass, straight-through gradient estimator in backward pass | |
z_q = rearrange(z_q, "b d t -> b t d") | |
z_q = self.out_proj(z_q) | |
z_q = rearrange(z_q, "b t d -> b d t") | |
return z_q, indices, commit_loss | |
def vq2emb(self, vq, proj=True): | |
emb = self.embed_code(vq) | |
if proj: | |
emb = self.out_proj(emb) | |
return emb.transpose(1, 2) | |
def get_emb(self): | |
return self.codebook.weight | |
def embed_code(self, embed_id): | |
return F.embedding(embed_id, self.codebook.weight) | |
def decode_code(self, embed_id): | |
return self.embed_code(embed_id).transpose(1, 2) | |
def decode_latents(self, latents): | |
encodings = rearrange(latents, "b d t -> (b t) d") | |
codebook = self.codebook.weight # codebook: (N x D) | |
# L2 normalize encodings and codebook | |
encodings = F.normalize(encodings) | |
codebook = F.normalize(codebook) | |
# Compute euclidean distance with codebook | |
dist = ( | |
encodings.pow(2).sum(1, keepdim=True) | |
- 2 * encodings @ codebook.t() | |
+ codebook.pow(2).sum(1, keepdim=True).t() | |
) | |
indices = rearrange((-dist).max(1)[1], "(b t) -> b t", b=latents.size(0)) | |
z_q = self.decode_code(indices) | |
return z_q, indices | |