Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (c) 2023 Amphion. | |
# | |
# This source code is licensed under the MIT license found in the | |
# LICENSE file in the root directory of this source tree. | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from .basic import UNetBlock | |
from modules.general.utils import ( | |
append_dims, | |
ConvNd, | |
normalization, | |
zero_module, | |
) | |
class ResBlock(UNetBlock): | |
r"""A residual block that can optionally change the number of channels. | |
Args: | |
channels: the number of input channels. | |
emb_channels: the number of timestep embedding channels. | |
dropout: the rate of dropout. | |
out_channels: if specified, the number of out channels. | |
use_conv: if True and out_channels is specified, use a spatial | |
convolution instead of a smaller 1x1 convolution to change the | |
channels in the skip connection. | |
dims: determines if the signal is 1D, 2D, or 3D. | |
up: if True, use this block for upsampling. | |
down: if True, use this block for downsampling. | |
""" | |
def __init__( | |
self, | |
channels, | |
emb_channels, | |
dropout: float = 0.0, | |
out_channels=None, | |
use_conv=False, | |
use_scale_shift_norm=False, | |
dims=2, | |
up=False, | |
down=False, | |
): | |
super().__init__() | |
self.channels = channels | |
self.emb_channels = emb_channels | |
self.dropout = dropout | |
self.out_channels = out_channels or channels | |
self.use_conv = use_conv | |
self.use_scale_shift_norm = use_scale_shift_norm | |
self.in_layers = nn.Sequential( | |
normalization(channels), | |
nn.SiLU(), | |
ConvNd(dims, channels, self.out_channels, 3, padding=1), | |
) | |
self.updown = up or down | |
if up: | |
self.h_upd = Upsample(channels, False, dims) | |
self.x_upd = Upsample(channels, False, dims) | |
elif down: | |
self.h_upd = Downsample(channels, False, dims) | |
self.x_upd = Downsample(channels, False, dims) | |
else: | |
self.h_upd = self.x_upd = nn.Identity() | |
self.emb_layers = nn.Sequential( | |
nn.SiLU(), | |
ConvNd( | |
dims, | |
emb_channels, | |
2 * self.out_channels if use_scale_shift_norm else self.out_channels, | |
1, | |
), | |
) | |
self.out_layers = nn.Sequential( | |
normalization(self.out_channels), | |
nn.SiLU(), | |
nn.Dropout(p=dropout), | |
zero_module( | |
ConvNd(dims, self.out_channels, self.out_channels, 3, padding=1) | |
), | |
) | |
if self.out_channels == channels: | |
self.skip_connection = nn.Identity() | |
elif use_conv: | |
self.skip_connection = ConvNd( | |
dims, channels, self.out_channels, 3, padding=1 | |
) | |
else: | |
self.skip_connection = ConvNd(dims, channels, self.out_channels, 1) | |
def forward(self, x, emb): | |
""" | |
Apply the block to a Tensor, conditioned on a timestep embedding. | |
x: an [N x C x ...] Tensor of features. | |
emb: an [N x emb_channels x ...] Tensor of timestep embeddings. | |
:return: an [N x C x ...] Tensor of outputs. | |
""" | |
if self.updown: | |
in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1] | |
h = in_rest(x) | |
h = self.h_upd(h) | |
x = self.x_upd(x) | |
h = in_conv(h) | |
else: | |
h = self.in_layers(x) | |
emb_out = self.emb_layers(emb) | |
emb_out = append_dims(emb_out, h.dim()) | |
if self.use_scale_shift_norm: | |
out_norm, out_rest = self.out_layers[0], self.out_layers[1:] | |
scale, shift = torch.chunk(emb_out, 2, dim=1) | |
h = out_norm(h) * (1 + scale) + shift | |
h = out_rest(h) | |
else: | |
h = h + emb_out | |
h = self.out_layers(h) | |
return self.skip_connection(x) + h | |
class Upsample(nn.Module): | |
r"""An upsampling layer with an optional convolution. | |
Args: | |
channels: channels in the inputs and outputs. | |
dims: determines if the signal is 1D, 2D, or 3D. If 3D, then | |
upsampling occurs in the inner-two dimensions. | |
out_channels: if specified, the number of out channels. | |
""" | |
def __init__(self, channels, dims=2, out_channels=None): | |
super().__init__() | |
self.channels = channels | |
self.out_channels = out_channels or channels | |
self.dims = dims | |
self.conv = ConvNd(dims, self.channels, self.out_channels, 3, padding=1) | |
def forward(self, x): | |
assert x.shape[1] == self.channels | |
if self.dims == 3: | |
x = F.interpolate( | |
x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), mode="nearest" | |
) | |
else: | |
x = F.interpolate(x, scale_factor=2, mode="nearest") | |
x = self.conv(x) | |
return x | |
class Downsample(nn.Module): | |
r"""A downsampling layer with an optional convolution. | |
Args: | |
channels: channels in the inputs and outputs. | |
dims: determines if the signal is 1D, 2D, or 3D. If 3D, then | |
downsampling occurs in the inner-two dimensions. | |
out_channels: if specified, the number of output channels. | |
""" | |
def __init__(self, channels, dims=2, out_channels=None): | |
super().__init__() | |
self.channels = channels | |
self.out_channels = out_channels or channels | |
self.dims = dims | |
stride = 2 if dims != 3 else (1, 2, 2) | |
self.op = ConvNd( | |
dims, self.channels, self.out_channels, 3, stride=stride, padding=1 | |
) | |
def forward(self, x): | |
assert x.shape[1] == self.channels | |
return self.op(x) | |