File size: 13,348 Bytes
5095cf5
f7a7aff
7ee3434
 
 
 
 
386bae1
7ee3434
 
 
 
 
 
 
 
 
 
 
 
f7428c0
7ee3434
451c794
7ee3434
451c794
f7428c0
 
 
 
 
451c794
a8db66d
f7428c0
 
 
 
a8db66d
 
 
451c794
a8db66d
 
 
 
 
 
 
 
 
 
 
 
 
 
f7428c0
 
 
 
a8db66d
 
 
 
 
 
 
 
 
 
 
7ee3434
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b928a8b
7ee3434
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47464b7
 
 
 
 
 
7ee3434
 
 
 
 
 
 
 
 
 
 
47464b7
 
 
 
7ee3434
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b928a8b
7ee3434
 
 
 
a8db66d
 
 
 
 
 
f7428c0
 
7ee3434
 
 
a8db66d
 
7ee3434
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47b2b81
7ee3434
 
 
 
 
 
f7428c0
 
7ee3434
 
 
 
 
 
 
 
 
f7428c0
7ee3434
 
8695770
 
 
 
 
 
 
 
 
 
 
 
7ee3434
 
 
 
 
 
 
 
 
 
 
2c533c3
7ee3434
 
 
 
 
 
 
f7a7aff
6ec52a1
f7a7aff
7ee3434
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
import spaces
import accelerate
import gradio as gr
import torch
import safetensors
from huggingface_hub import hf_hub_download
import soundfile as sf
import os

import numpy as np
import librosa
from models.codec.kmeans.repcodec_model import RepCodec
from models.tts.maskgct.maskgct_s2a import MaskGCT_S2A
from models.tts.maskgct.maskgct_t2s import MaskGCT_T2S
from models.codec.amphion_codec.codec import CodecEncoder, CodecDecoder
from transformers import Wav2Vec2BertModel
from utils.util import load_config
from models.tts.maskgct.g2p.g2p_generation import g2p, chn_eng_g2p

from transformers import SeamlessM4TFeatureExtractor
import py3langid as langid


processor = SeamlessM4TFeatureExtractor.from_pretrained("facebook/w2v-bert-2.0")
device = torch.device("cuda" if torch.cuda.is_available() else "CPU")
whisper_model = None
output_file_name_idx = 0

def detect_text_language(text):
    return langid.classify(text)[0]

def detect_speech_language(speech_file):
    import whisper
    global whisper_model
    if whisper_model == None:
        whisper_model = whisper.load_model("turbo")
    # load audio and pad/trim it to fit 30 seconds
    audio = whisper.load_audio(speech_file)
    audio = whisper.pad_or_trim(audio)

    # make log-Mel spectrogram and move to the same device as the model
    mel = whisper.log_mel_spectrogram(audio, n_mels=128).to(whisper_model.device)

    # detect the spoken language
    _, probs = whisper_model.detect_language(mel)
    return max(probs, key=probs.get)


@torch.no_grad()
def get_prompt_text(speech_16k, language):
    full_prompt_text = ""
    shot_prompt_text = ""
    short_prompt_end_ts = 0.0

    import whisper
    global whisper_model
    if whisper_model == None:
        whisper_model = whisper.load_model("turbo")
    asr_result = whisper_model.transcribe(speech_16k, language=language)
    full_prompt_text = asr_result["text"] # whisper asr result
    #text = asr_result["segments"][0]["text"] # whisperx asr result
    shot_prompt_text = ""
    short_prompt_end_ts = 0.0
    for segment in asr_result["segments"]:
        shot_prompt_text = shot_prompt_text +  segment['text']
        short_prompt_end_ts = segment['end']
        if short_prompt_end_ts >= 4:
            break
    return full_prompt_text, shot_prompt_text, short_prompt_end_ts


def g2p_(text, language):
    if language in ["zh", "en"]:
        return chn_eng_g2p(text)
    else:
        return g2p(text, sentence=None, language=language)


def build_t2s_model(cfg, device):
    t2s_model = MaskGCT_T2S(cfg=cfg)
    t2s_model.eval()
    t2s_model.to(device)
    return t2s_model


def build_s2a_model(cfg, device):
    soundstorm_model = MaskGCT_S2A(cfg=cfg)
    soundstorm_model.eval()
    soundstorm_model.to(device)
    return soundstorm_model


def build_semantic_model(device):
    semantic_model = Wav2Vec2BertModel.from_pretrained("facebook/w2v-bert-2.0")
    semantic_model.eval()
    semantic_model.to(device)
    stat_mean_var = torch.load("./models/tts/maskgct/ckpt/wav2vec2bert_stats.pt")
    semantic_mean = stat_mean_var["mean"]
    semantic_std = torch.sqrt(stat_mean_var["var"])
    semantic_mean = semantic_mean.to(device)
    semantic_std = semantic_std.to(device)
    return semantic_model, semantic_mean, semantic_std


def build_semantic_codec(cfg, device):
    semantic_codec = RepCodec(cfg=cfg)
    semantic_codec.eval()
    semantic_codec.to(device)
    return semantic_codec


def build_acoustic_codec(cfg, device):
    codec_encoder = CodecEncoder(cfg=cfg.encoder)
    codec_decoder = CodecDecoder(cfg=cfg.decoder)
    codec_encoder.eval()
    codec_decoder.eval()
    codec_encoder.to(device)
    codec_decoder.to(device)
    return codec_encoder, codec_decoder


@torch.no_grad()
def extract_features(speech, processor):
    inputs = processor(speech, sampling_rate=16000, return_tensors="pt")
    input_features = inputs["input_features"][0]
    attention_mask = inputs["attention_mask"][0]
    return input_features, attention_mask


@torch.no_grad()
def extract_semantic_code(semantic_mean, semantic_std, input_features, attention_mask):
    vq_emb = semantic_model(
        input_features=input_features,
        attention_mask=attention_mask,
        output_hidden_states=True,
    )
    feat = vq_emb.hidden_states[17]  # (B, T, C)
    feat = (feat - semantic_mean.to(feat)) / semantic_std.to(feat)

    semantic_code, rec_feat = semantic_codec.quantize(feat)  # (B, T)
    return semantic_code, rec_feat


@torch.no_grad()
def extract_acoustic_code(speech):
    vq_emb = codec_encoder(speech.unsqueeze(1))
    _, vq, _, _, _ = codec_decoder.quantizer(vq_emb)
    acoustic_code = vq.permute(1, 2, 0)
    return acoustic_code


@torch.no_grad()
def text2semantic(
    device,
    prompt_speech,
    prompt_text,
    prompt_language,
    target_text,
    target_language,
    target_len=None,
    n_timesteps=50,
    cfg=2.5,
    rescale_cfg=0.75,
):

    prompt_phone_id = g2p_(prompt_text, prompt_language)[1]

    target_phone_id = g2p_(target_text, target_language)[1]

    if target_len < 0:
        target_len = int(
            (len(prompt_speech) * len(target_phone_id) / len(prompt_phone_id))
            / 16000
            * 50
        )
    else:
        target_len = int(target_len * 50)

    prompt_phone_id = torch.tensor(prompt_phone_id, dtype=torch.long).to(device)
    target_phone_id = torch.tensor(target_phone_id, dtype=torch.long).to(device)

    phone_id = torch.cat([prompt_phone_id, target_phone_id])

    input_fetures, attention_mask = extract_features(prompt_speech, processor)
    input_fetures = input_fetures.unsqueeze(0).to(device)
    attention_mask = attention_mask.unsqueeze(0).to(device)
    semantic_code, _ = extract_semantic_code(
        semantic_mean, semantic_std, input_fetures, attention_mask
    )

    predict_semantic = t2s_model.reverse_diffusion(
        semantic_code[:, :],
        target_len,
        phone_id.unsqueeze(0),
        n_timesteps=n_timesteps,
        cfg=cfg,
        rescale_cfg=rescale_cfg,
    )

    combine_semantic_code = torch.cat([semantic_code[:, :], predict_semantic], dim=-1)
    prompt_semantic_code = semantic_code

    return combine_semantic_code, prompt_semantic_code


@torch.no_grad()
def semantic2acoustic(
    device,
    combine_semantic_code,
    acoustic_code,
    n_timesteps=[25, 10, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
    cfg=2.5,
    rescale_cfg=0.75,
):

    semantic_code = combine_semantic_code

    cond = s2a_model_1layer.cond_emb(semantic_code)
    prompt = acoustic_code[:, :, :]
    predict_1layer = s2a_model_1layer.reverse_diffusion(
        cond=cond,
        prompt=prompt,
        temp=1.5,
        filter_thres=0.98,
        n_timesteps=n_timesteps[:1],
        cfg=cfg,
        rescale_cfg=rescale_cfg,
    )

    cond = s2a_model_full.cond_emb(semantic_code)
    prompt = acoustic_code[:, :, :]
    predict_full = s2a_model_full.reverse_diffusion(
        cond=cond,
        prompt=prompt,
        temp=1.5,
        filter_thres=0.98,
        n_timesteps=n_timesteps,
        cfg=cfg,
        rescale_cfg=rescale_cfg,
        gt_code=predict_1layer,
    )

    vq_emb = codec_decoder.vq2emb(predict_full.permute(2, 0, 1), n_quantizers=12)
    recovered_audio = codec_decoder(vq_emb)
    prompt_vq_emb = codec_decoder.vq2emb(prompt.permute(2, 0, 1), n_quantizers=12)
    recovered_prompt_audio = codec_decoder(prompt_vq_emb)
    recovered_prompt_audio = recovered_prompt_audio[0][0].cpu().numpy()
    recovered_audio = recovered_audio[0][0].cpu().numpy()
    combine_audio = np.concatenate([recovered_prompt_audio, recovered_audio])

    return combine_audio, recovered_audio


# Load the model and checkpoints
def load_models():
    cfg_path = "./models/tts/maskgct/config/maskgct.json"

    cfg = load_config(cfg_path)
    semantic_model, semantic_mean, semantic_std = build_semantic_model(device)
    semantic_codec = build_semantic_codec(cfg.model.semantic_codec, device)
    codec_encoder, codec_decoder = build_acoustic_codec(
        cfg.model.acoustic_codec, device
    )
    t2s_model = build_t2s_model(cfg.model.t2s_model, device)
    s2a_model_1layer = build_s2a_model(cfg.model.s2a_model.s2a_1layer, device)
    s2a_model_full = build_s2a_model(cfg.model.s2a_model.s2a_full, device)

    # Download checkpoints
    semantic_code_ckpt = hf_hub_download(
        "amphion/MaskGCT", filename="semantic_codec/model.safetensors"
    )
    # codec_encoder_ckpt = hf_hub_download(
    #     "amphion/MaskGCT", filename="acoustic_codec/model.safetensors"
    # )
    # codec_decoder_ckpt = hf_hub_download(
    #     "amphion/MaskGCT", filename="acoustic_codec/model_1.safetensors"
    # )
    t2s_model_ckpt = hf_hub_download(
        "amphion/MaskGCT", filename="t2s_model/model.safetensors"
    )
    s2a_1layer_ckpt = hf_hub_download(
        "amphion/MaskGCT", filename="s2a_model/s2a_model_1layer/model.safetensors"
    )
    s2a_full_ckpt = hf_hub_download(
        "amphion/MaskGCT", filename="s2a_model/s2a_model_full/model.safetensors"
    )

    safetensors.torch.load_model(semantic_codec, semantic_code_ckpt)
    # safetensors.torch.load_model(codec_encoder, codec_encoder_ckpt)
    # safetensors.torch.load_model(codec_decoder, codec_decoder_ckpt)
    accelerate.load_checkpoint_and_dispatch(codec_encoder, "./acoustic_codec/model.safetensors")
    accelerate.load_checkpoint_and_dispatch(codec_decoder, "./acoustic_codec/model_1.safetensors")
    safetensors.torch.load_model(t2s_model, t2s_model_ckpt)
    safetensors.torch.load_model(s2a_model_1layer, s2a_1layer_ckpt)
    safetensors.torch.load_model(s2a_model_full, s2a_full_ckpt)

    return (
        semantic_model,
        semantic_mean,
        semantic_std,
        semantic_codec,
        codec_encoder,
        codec_decoder,
        t2s_model,
        s2a_model_1layer,
        s2a_model_full,
    )


@torch.no_grad()
def maskgct_inference(
    prompt_speech_path,
    target_text,
    target_len=None,
    n_timesteps=25,
    cfg=2.5,
    rescale_cfg=0.75,
    n_timesteps_s2a=[25, 10, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
    cfg_s2a=2.5,
    rescale_cfg_s2a=0.75,
    device=torch.device("cuda:0"),
):
    speech_16k = librosa.load(prompt_speech_path, sr=16000)[0]
    speech = librosa.load(prompt_speech_path, sr=24000)[0]

    prompt_language = detect_speech_language(prompt_speech_path)
    full_prompt_text, short_prompt_text, shot_prompt_end_ts = get_prompt_text(prompt_speech_path,
                                                                              prompt_language)
    # use the first 4+ seconds wav as the prompt in case the prompt wav is too long
    speech = speech[0: int(shot_prompt_end_ts * 24000)]
    speech_16k = speech_16k[0: int(shot_prompt_end_ts*16000)]

    target_language = detect_text_language(target_text)
    combine_semantic_code, _ = text2semantic(
        device,
        speech_16k,
        short_prompt_text,
        prompt_language,
        target_text,
        target_language,
        target_len,
        n_timesteps,
        cfg,
        rescale_cfg,
    )
    acoustic_code = extract_acoustic_code(torch.tensor(speech).unsqueeze(0).to(device))
    _, recovered_audio = semantic2acoustic(
        device,
        combine_semantic_code,
        acoustic_code,
        n_timesteps=n_timesteps_s2a,
        cfg=cfg_s2a,
        rescale_cfg=rescale_cfg_s2a,
    )

    return recovered_audio


@spaces.GPU
def inference(
    prompt_wav,
    target_text,
    target_len,
    n_timesteps,
):
    global output_file_name_idx
    save_path = f"./output/output_{output_file_name_idx}.wav"
    os.makedirs("./output", exist_ok=True)
    recovered_audio = maskgct_inference(
        prompt_wav,
        target_text,
        target_len=target_len,
        n_timesteps=int(n_timesteps),
        device=device,
    )
    sf.write(save_path, recovered_audio, 24000)
    output_file_name_idx = (output_file_name_idx + 1) % 10
    return save_path

# Load models once
(
    semantic_model,
    semantic_mean,
    semantic_std,
    semantic_codec,
    codec_encoder,
    codec_decoder,
    t2s_model,
    s2a_model_1layer,
    s2a_model_full,
) = load_models()

# Language list
language_list = ["en", "zh", "ja", "ko", "fr", "de"]

# Gradio interface
iface = gr.Interface(
    fn=inference,
    inputs=[
        gr.Audio(label="Upload Prompt Wav", type="filepath"),
        gr.Textbox(label="Target Text"),
        gr.Number(
            label="Target Duration (in seconds), if the target duration is less than 0, the system will estimate a duration.", value=-1
        ),  # Removed 'optional=True'
        gr.Slider(
            label="Number of Timesteps", minimum=15, maximum=100, value=25, step=1
        ),
    ],
    outputs=gr.Audio(label="Generated Audio"),
    title="MaskGCT TTS Demo",
    description="""
    [![arXiv](https://img.shields.io/badge/arXiv-Paper-COLOR.svg)](https://arxiv.org/abs/2409.00750) [![hf](https://img.shields.io/badge/%F0%9F%A4%97%20HuggingFace-model-yellow)](https://huggingface.co./amphion/maskgct) [![hf](https://img.shields.io/badge/%F0%9F%A4%97%20HuggingFace-demo-pink)](https://huggingface.co./spaces/amphion/maskgct) [![readme](https://img.shields.io/badge/README-Key%20Features-blue)](https://github.com/open-mmlab/Amphion/tree/main/models/tts/maskgct)
    """
)

# Launch the interface
iface.launch(allowed_paths=["./output"])