File size: 29,700 Bytes
c968fc3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
# Copyright (c) 2023 Amphion.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

from transformers import LlamaConfig, LlamaForCausalLM, LlamaModel
import torch
import torch.nn.functional as F
import numpy as np
import os
import torch.nn as nn
from typing import List, Optional, Tuple, Union

from transformers.models.llama.modeling_llama import LlamaDecoderLayer

NUM_QUANTIZERS = 8  # number of quantizers in total, currently assumes first layer AR.
START_QUANTIZATION_LAYER = 1  # start quantization layer
END_QUANTIZATION_LAYER = 7  # end quantization layer


class LlamaAdaptiveRMSNorm(nn.Module):
    def __init__(self, hidden_size=1024, eps=1e-9, dim_cond=1024):
        super().__init__()
        self.to_weight = nn.Linear(dim_cond, hidden_size)
        nn.init.normal_(self.to_weight.weight, mean=0.0, std=0.02)
        # nn.init.zeros_(self.to_weight.weight)
        # nn.init.ones_(self.to_weight.bias)
        self.variance_epsilon = eps
        self._is_hf_initialized = True  # disable automatic init

    def forward(self, hidden_states, cond_embedding):
        input_dtype = hidden_states.dtype
        variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
        hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)

        weight = self.to_weight(cond_embedding)

        return (weight * hidden_states).to(input_dtype)


class LlamaNARDecoderLayer(LlamaDecoderLayer):
    def __init__(self, config: LlamaConfig):
        """Override to adaptive layer norm"""
        super().__init__(config=config, layer_idx=0)  # init attention, mlp, etc.
        self.input_layernorm = LlamaAdaptiveRMSNorm(
            config.hidden_size, eps=config.rms_norm_eps, dim_cond=config.hidden_size
        )
        self.post_attention_layernorm = LlamaAdaptiveRMSNorm(
            config.hidden_size, eps=config.rms_norm_eps, dim_cond=config.hidden_size
        )

    # add `cond` in forward function
    def forward(
        self,
        hidden_states: torch.Tensor,
        cond_embedding: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_value: Optional[Tuple[torch.Tensor]] = None,
        output_attentions: Optional[bool] = False,
        use_cache: Optional[bool] = False,
    ) -> Tuple[
        torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]
    ]:
        """
        Args:
            hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
            attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
                `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
            output_attentions (`bool`, *optional*):
                Whether or not to return the attentions tensors of all attention layers. See `attentions` under
                returned tensors for more detail.
            use_cache (`bool`, *optional*):
                If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
                (see `past_key_values`).
            past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
        """

        residual = hidden_states

        hidden_states = self.input_layernorm(
            hidden_states, cond_embedding=cond_embedding
        )

        # Self Attention
        hidden_states, self_attn_weights, present_key_value = self.self_attn(
            hidden_states=hidden_states,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_value=past_key_value,
            output_attentions=output_attentions,
            use_cache=use_cache,
        )
        hidden_states = residual + hidden_states

        # Fully Connected
        residual = hidden_states
        hidden_states = self.post_attention_layernorm(
            hidden_states, cond_embedding=cond_embedding
        )
        hidden_states = self.mlp(hidden_states)
        hidden_states = residual + hidden_states

        outputs = (hidden_states,)

        if output_attentions:
            outputs += (self_attn_weights,)

        if use_cache:
            outputs += (present_key_value,)

        return outputs


from transformers.models.llama.modeling_llama import BaseModelOutputWithPast


class MultiEmbedding(nn.Module):
    """Embedding for multiple quantization layers, summing up the embeddings of each layer."""

    def __init__(
        self,
        num_embeddings=1034,
        embedding_dim=1024,
        num_quantization_layers=NUM_QUANTIZERS,
    ):
        super().__init__()
        self.embeddings = nn.ModuleList(
            [
                nn.Embedding(num_embeddings, embedding_dim)
                for _ in range(num_quantization_layers)
            ]
        )

        # initialize embeddings
        for i in range(num_quantization_layers):
            self.embeddings[i].weight.data.normal_(mean=0.0, std=0.02)
        self._is_hf_initialized = True  # disable automatic init

    def forward(self, input_ids):
        """Input: [num_quant, B, T] -> Output: [B, T, H]"""
        num_quant, B, T = input_ids.shape
        summed_embeddings = torch.zeros(
            B, T, self.embeddings[0].embedding_dim, device=input_ids.device
        )
        for i in range(num_quant):
            summed_embeddings += self.embeddings[i](input_ids[i])
        return summed_embeddings


class LlammaNARModel(LlamaModel):
    def __init__(self, config):
        """Adding adaptive layer norm, conditional embeddings, and multi-level input embeddings to the decoder layer"""
        super().__init__(config)
        self.layers = nn.ModuleList(
            [LlamaNARDecoderLayer(config) for _ in range(config.num_hidden_layers)]
        )
        self.norm = LlamaAdaptiveRMSNorm(
            config.hidden_size, eps=config.rms_norm_eps, dim_cond=config.hidden_size
        )

        self.embed_cond = nn.Embedding(
            NUM_QUANTIZERS, config.hidden_size
        )  # 7 quantization layers

        for layer in self.layers:
            layer.input_layernorm = LlamaAdaptiveRMSNorm(
                config.hidden_size, eps=config.rms_norm_eps, dim_cond=config.hidden_size
            )
            layer.post_attention_layernorm = LlamaAdaptiveRMSNorm(
                config.hidden_size, eps=config.rms_norm_eps, dim_cond=config.hidden_size
            )

        self.post_init()

    def _prepare_decoder_attention_mask(
        self, attention_mask, input_shape, inputs_embeds, past_key_values_length
    ):
        # create noncausal mask
        # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
        combined_attention_mask = None

        def _expand_mask(
            mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None
        ):
            """
            Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
            """
            bsz, src_len = mask.size()
            tgt_len = tgt_len if tgt_len is not None else src_len

            expanded_mask = (
                mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
            )

            inverted_mask = 1.0 - expanded_mask

            return inverted_mask.masked_fill(
                inverted_mask.to(torch.bool), torch.finfo(dtype).min
            )

        if attention_mask is not None:
            # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
            expanded_attn_mask = _expand_mask(
                attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]
            ).to(inputs_embeds.device)
            combined_attention_mask = (
                expanded_attn_mask
                if combined_attention_mask is None
                else expanded_attn_mask + combined_attention_mask
            )

        return combined_attention_mask

    def forward(
        self,
        input_ids: torch.LongTensor = None,  # [num_quant, B, T]
        cond: torch.LongTensor = None,  # index for conditional embeddings, [B]
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, BaseModelOutputWithPast]:

        # retrieve some shape info
        batch_size, seq_length, _ = input_ids.shape

        inputs_embeds = input_ids  # [B, T, H]
        # embed cond
        cond_embedding = self.embed_cond(cond)  # [B, H]

        output_attentions = (
            output_attentions
            if output_attentions is not None
            else self.config.output_attentions
        )
        output_hidden_states = (
            output_hidden_states
            if output_hidden_states is not None
            else self.config.output_hidden_states
        )
        use_cache = use_cache if use_cache is not None else self.config.use_cache

        return_dict = (
            return_dict if return_dict is not None else self.config.use_return_dict
        )

        seq_length_with_past = seq_length
        past_key_values_length = 0

        if past_key_values is not None:
            past_key_values_length = past_key_values[0][0].shape[2]
            seq_length_with_past = seq_length_with_past + past_key_values_length

        if position_ids is None:
            device = input_ids.device if input_ids is not None else inputs_embeds.device
            position_ids = torch.arange(
                past_key_values_length,
                seq_length + past_key_values_length,
                dtype=torch.long,
                device=device,
            )
            position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
        else:
            position_ids = position_ids.view(-1, seq_length).long()

        # embed positions
        if attention_mask is None:
            attention_mask = torch.ones(
                (batch_size, seq_length_with_past),
                dtype=torch.bool,
                device=inputs_embeds.device,
            )
        attention_mask = self._prepare_decoder_attention_mask(
            attention_mask,
            (batch_size, seq_length),
            inputs_embeds,
            past_key_values_length,
        )

        hidden_states = inputs_embeds

        if self.gradient_checkpointing and self.training:
            if use_cache:
                use_cache = False

        # decoder layers
        all_hidden_states = () if output_hidden_states else None
        all_self_attns = () if output_attentions else None
        next_decoder_cache = () if use_cache else None

        for idx, decoder_layer in enumerate(self.layers):
            if output_hidden_states:
                all_hidden_states += (hidden_states,)

            past_key_value = (
                past_key_values[idx] if past_key_values is not None else None
            )

            if self.gradient_checkpointing and self.training:
                raise NotImplementedError

                def create_custom_forward(module):
                    def custom_forward(*inputs):
                        # None for past_key_value
                        return module(*inputs, output_attentions, None)

                    return custom_forward

                layer_outputs = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(decoder_layer),
                    hidden_states,
                    attention_mask,
                    position_ids,
                    None,
                )
            else:
                layer_outputs = decoder_layer(
                    hidden_states,
                    attention_mask=attention_mask,
                    position_ids=position_ids,
                    past_key_value=past_key_value,
                    output_attentions=output_attentions,
                    use_cache=use_cache,
                    cond_embedding=cond_embedding,  # using cond embed
                )

            hidden_states = layer_outputs[0]

            if use_cache:
                next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)

            if output_attentions:
                all_self_attns += (layer_outputs[1],)

        hidden_states = self.norm(hidden_states, cond_embedding=cond_embedding)

        # add hidden states from the last decoder layer
        if output_hidden_states:
            all_hidden_states += (hidden_states,)

        next_cache = next_decoder_cache if use_cache else None
        if not return_dict:
            return tuple(
                v
                for v in [hidden_states, next_cache, all_hidden_states, all_self_attns]
                if v is not None
            )
        return BaseModelOutputWithPast(
            last_hidden_state=hidden_states,
            past_key_values=next_cache,
            hidden_states=all_hidden_states,
            attentions=all_self_attns,
        )


from transformers.models.llama.modeling_llama import LlamaPreTrainedModel
from transformers.models.llama.modeling_llama import CrossEntropyLoss
from easydict import EasyDict as edict


class LlamaForNARModeling(LlamaPreTrainedModel):
    def __init__(self, config):
        super().__init__(config)
        self.model = LlammaNARModel(config)

        self.lm_head = nn.ModuleList(
            [
                nn.Linear(config.hidden_size, config.vocab_size, bias=False)
                for i in range(END_QUANTIZATION_LAYER - START_QUANTIZATION_LAYER + 1)
            ]
        )

        # Initialize weights and apply final processing
        self.post_init()

    def forward(
        self,
        cond: torch.LongTensor,  # added
        prediction_target: torch.LongTensor = None,  # added. No shifting. -100 means no loss
        input_ids: torch.LongTensor = None,  # expect an embedding, [B, T, H]
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        # labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ):
        """Prediction target: [B, T]"""
        output_attentions = (
            output_attentions
            if output_attentions is not None
            else self.config.output_attentions
        )
        output_hidden_states = (
            output_hidden_states
            if output_hidden_states is not None
            else self.config.output_hidden_states
        )
        return_dict = (
            return_dict if return_dict is not None else self.config.use_return_dict
        )

        # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
        outputs = self.model(
            cond=cond,  # added
            input_ids=input_ids,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        hidden_states = outputs[0]
        logits = self.lm_head[cond - START_QUANTIZATION_LAYER](hidden_states)

        loss = None
        loss_fct = CrossEntropyLoss()

        if prediction_target is not None:
            # calculate loss if prediction_target is provided
            logits_tmp = logits.view(-1, logits.size(-1))
            prediction_target = prediction_target.view(-1)
            loss = loss_fct(logits_tmp, prediction_target)

        return edict(
            loss=loss,
            logits=logits,
        )


class ValleNAR(nn.Module):
    def __init__(
        self,
        phone_vocab_size=256,
        target_vocab_size=1024,
        hidden_size=1024,
        intermediate_size=4096,
        num_hidden_layers=12,
        num_attention_heads=16,
        pad_token_id=1024 + 256,
        bos_target_id=1282,
        eos_target_id=1283,
        bos_phone_id=1284,
        eos_phone_id=1285,
        bos_prompt_id=1286,
        eos_prompt_id=1287,
        use_input_embeds=False,
        emb_dim=256,
    ):
        super(ValleNAR, self).__init__()
        self.config = LlamaConfig(
            vocab_size=phone_vocab_size + target_vocab_size + 10,
            hidden_size=hidden_size,
            intermediate_size=intermediate_size,
            num_hidden_layers=num_hidden_layers,
            num_attention_heads=num_attention_heads,
            pad_token_id=pad_token_id,
            bos_token_id=bos_target_id,
            eos_token_id=eos_target_id,
            use_cache=False,
        )
        self.phone_vocab_size = phone_vocab_size
        self.target_vocab_size = target_vocab_size
        self.pad_token_id = pad_token_id
        self.bos_target_id = bos_target_id
        self.eos_target_id = eos_target_id
        self.bos_phone_id = bos_phone_id
        self.eos_phone_id = eos_phone_id
        self.bos_prompt_id = bos_prompt_id
        self.eos_prompt_id = eos_prompt_id
        self.model = LlamaForNARModeling(self.config)

        self.use_input_embeds = use_input_embeds

        self.phone_embedder = nn.Embedding(
            self.phone_vocab_size + 10, hidden_size
        )  # use phone_embedder to embed all eos, bos tokens
        self.prompt_embedder = MultiEmbedding(
            num_embeddings=self.target_vocab_size,
            embedding_dim=hidden_size,
            num_quantization_layers=NUM_QUANTIZERS,
        )
        self.phone_embedder.weight.data.normal_(mean=0.0, std=0.02)

        # use linear mask schedule when training
        # another option is uniform
        self.mask_layer_schedule = "uniform"

        # no input embedding is used to provide speaker information
        if self.use_input_embeds:
            self.emb_linear = nn.Linear(emb_dim, hidden_size)
            self.emb_linear.weight.data.normal_(mean=0.0, std=0.01)
            self.emb_linear.bias.data.zero_()

    def forward(
        self,
        phone_ids,
        phone_mask,
        target_ids,
        target_mask,
        target_quantization_layer=None,
        prompt_len=None,
        dropout=0.0,
    ):
        """
        phone_ids: [B, T]
        phone_mask: [B, T]
        target_ids: [8,B,T]
        target_mask: [B, T]
        dropout: rate of dropping out the target tokens
        """
        assert (target_ids < 1024).all(), "target_ids should be less than 1024"
        phone_ids = phone_ids + self.target_vocab_size
        phone_ids = phone_ids * phone_mask + (1 - phone_mask) * self.pad_token_id
        # assert (phone_ids >= 1024).all(), "phone_ids should be greater than 1024"
        # phone_ids, phone_mask, phone_label = self.add_phone_eos_bos_label(
        #     phone_ids,
        #     phone_mask,
        #     self.eos_phone_id,
        #     self.bos_phone_id,
        #     self.pad_token_id,
        # )
        phone_label = -100 * (1 - phone_mask)
        # get phone embedding
        phone_embedding = self.phone_embedder(
            phone_ids - self.target_vocab_size
        )  # [B, T, H]

        if prompt_len is not None:
            assert not self.training  # inference stage fix prompt len to input
            NUM_PROMPT_TOKENS = prompt_len
        else:
            assert self.training
            # randomly select a prompt length
            assert self.training  # randomize prompt len in training
            NUM_PROMPT_TOKENS = np.random.randint(
                min(target_ids.shape[-1] // 4, 5), target_ids.shape[-1] // 2
            )

        # extract 8-level prompts
        prompt_tokens = target_ids[:, :, :NUM_PROMPT_TOKENS]  # [Q, B, T]
        prompt_mask = torch.ones_like(prompt_tokens[0])
        prompt_label = -100 * prompt_mask
        # get prompt embedding
        prompt_embedding = self.prompt_embedder(prompt_tokens)  # [B, T, H]

        # randomly select a target qnt layer to predict
        # total quant layer is 0 to 7
        if target_quantization_layer is None:
            if self.mask_layer_schedule == "linear":
                weights = torch.tensor(
                    [
                        NUM_QUANTIZERS - i
                        for i in range(
                            START_QUANTIZATION_LAYER, END_QUANTIZATION_LAYER + 1
                        )
                    ]
                )
                weights = weights / weights.sum()
                mask_layer = (
                    torch.multinomial(weights, 1, replacement=True)
                    + START_QUANTIZATION_LAYER
                )
                assert (
                    mask_layer >= START_QUANTIZATION_LAYER
                    and mask_layer <= END_QUANTIZATION_LAYER
                )
                target_quantization_layer = mask_layer.item()
            elif self.mask_layer_schedule == "cosine":
                weights = torch.tensor(
                    [
                        np.cos(i / NUM_QUANTIZERS * np.pi / 2)
                        for i in range(
                            START_QUANTIZATION_LAYER, END_QUANTIZATION_LAYER + 1
                        )
                    ]
                )
                weights = weights / weights.sum()
                mask_layer = (
                    torch.multinomial(weights, 1, replacement=True)
                    + START_QUANTIZATION_LAYER
                )
                assert (
                    mask_layer >= START_QUANTIZATION_LAYER
                    and mask_layer <= END_QUANTIZATION_LAYER
                )
                target_quantization_layer = mask_layer.item()
                breakpoint()
            elif self.mask_layer_schedule == "uniform":
                target_quantization_layer = np.random.randint(
                    START_QUANTIZATION_LAYER, END_QUANTIZATION_LAYER + 1
                )

            # print(f'target layer: {target_quantization_layer}')
        # prompt of the target part
        target_prompt_ids = target_ids[
            :target_quantization_layer, :, NUM_PROMPT_TOKENS:
        ]

        def randomly_set_elements(tensor, fraction, value):
            """
            Randomly set a fraction of the elements in a tensor to a specific value.

            Args:
            tensor (torch.Tensor): The input tensor.
            fraction (float): The fraction of elements to set to the specified value (between 0 and 1).
            value (float or int): The value to set the elements to.

            Returns:
            torch.Tensor: The tensor with some elements set to the specified value.
            """
            # Create a mask with the same shape as the tensor
            mask = torch.rand_like(tensor, dtype=torch.float32) < fraction
            # Clone the tensor to avoid modifying the original tensor
            result_tensor = tensor.clone()
            # Set the elements where the mask is True to the specified value
            result_tensor[mask] = value
            return result_tensor

        if dropout != 0.0:
            target_prompt_ids = randomly_set_elements(
                target_prompt_ids, dropout, self.target_vocab_size
            )

        target_embedding = self.prompt_embedder(target_prompt_ids)

        # mask of the target part
        target_mask = target_mask[:, NUM_PROMPT_TOKENS:]

        target_labels = target_ids[
            target_quantization_layer, :, NUM_PROMPT_TOKENS:
        ] * target_mask + (-100 * (1 - target_mask))

        # input embeddings
        input_embeddings = torch.cat(
            [phone_embedding, prompt_embedding, target_embedding], dim=1
        )
        input_mask = torch.cat([phone_mask, prompt_mask, target_mask], dim=1)  # [B, T]
        prediction_target = torch.cat(
            [phone_label, prompt_label, target_labels], dim=1
        )  # [B, T]

        out = self.model(
            cond=torch.tensor(
                target_quantization_layer,
                device=prediction_target.device,
                dtype=torch.long,
            ),
            input_ids=input_embeddings,
            prediction_target=prediction_target,
            attention_mask=input_mask,
            return_dict=True,
        )
        logits = out.logits[:, -target_embedding.shape[1] :, :]
        targets = prediction_target[..., -target_embedding.shape[1] :]
        top1_acc = logits.argmax(-1) == targets
        top1_acc = (top1_acc * target_mask).sum() / target_mask.sum()

        top5_acc = (logits.topk(5, dim=-1).indices == targets.unsqueeze(-1)).any(-1)
        top5_acc = (top5_acc * target_mask).sum() / target_mask.sum()

        top10_acc = (logits.topk(10, dim=-1).indices == targets.unsqueeze(-1)).any(-1)
        top10_acc = (top10_acc * target_mask).sum() / target_mask.sum()

        out.target_quantization_layer = target_quantization_layer
        out.top1_acc = top1_acc
        out.top5_acc = top5_acc
        out.top10_acc = top10_acc

        return out

    def add_phone_eos_bos_label(
        self, phone_ids, phone_mask, phone_eos_id, phone_bos_id, pad_token_id
    ):
        # phone_ids: [B, T]
        # phone_mask: [B, T]

        phone_ids = phone_ids + self.target_vocab_size * phone_mask

        phone_ids = phone_ids * phone_mask
        phone_ids = F.pad(phone_ids, (0, 1), value=0) + phone_eos_id * F.pad(
            1 - phone_mask, (0, 1), value=1
        )  # make pad token eos token, add eos token at the end
        phone_mask = F.pad(phone_mask, (1, 0), value=1)  # add eos mask
        phone_ids = phone_ids * phone_mask + pad_token_id * (
            1 - phone_mask
        )  # restore pad token ids
        phone_ids = F.pad(phone_ids, (1, 0), value=phone_bos_id)  # add bos token
        phone_mask = F.pad(phone_mask, (1, 0), value=1)  # add bos mask
        phone_label = -100 * torch.ones_like(
            phone_ids
        )  # loss for entire phone is not computed (passed to llama)
        return phone_ids, phone_mask, phone_label

    @torch.no_grad()
    def sample_hf(
        self,
        phone_ids,  # [B, T]
        prompt_ids,  # [8, B, T]
        first_stage_ids,  # [B, T]
        top_k=50,
        top_p=1,
        temperature=1.1,
        first_stage_ids_gt=None,  # [Q, B, T]
        first_stage_ids_gt_end_layer=None,  # 2 to 8
    ):
        """
        phone_ids: [B, T]
        prompt_ids: [8, B, T]
        first_stage_ids: [B, T] result from first quant layer. Should be continuation of prompt_ids
        """
        phone_mask = torch.ones_like(phone_ids, dtype=torch.long)

        assert prompt_ids.shape[-1] >= 5, "prompt_ids should have at least 5 tokens"
        target_ids = torch.cat(
            [prompt_ids, first_stage_ids.expand(prompt_ids.shape[0], -1, -1)], dim=-1
        )
        target_mask = torch.ones_like(target_ids[0], dtype=torch.long)

        if first_stage_ids_gt is not None:
            target_ids[
                :first_stage_ids_gt_end_layer, :, -first_stage_ids_gt.shape[-1] :
            ] = first_stage_ids_gt[:first_stage_ids_gt_end_layer]

        gen_len = first_stage_ids.shape[-1]

        start_qnt_layer = 1
        if first_stage_ids_gt_end_layer is not None:
            start_qnt_layer = first_stage_ids_gt_end_layer
        for qnt_level in range(start_qnt_layer, 8):
            out = self.forward(
                phone_ids=phone_ids,
                phone_mask=phone_mask,
                target_ids=target_ids,
                target_mask=target_mask,
                target_quantization_layer=qnt_level,
                prompt_len=prompt_ids.shape[-1],
            )
            logits = out.logits
            gen_tokens = torch.argmax(logits, dim=-1).reshape(-1)[
                -gen_len:
            ]  # [T], generated tokens in this level

            # overwrite the target_ids with the generated tokens
            target_ids[qnt_level, :, -gen_len:] = gen_tokens

        return target_ids[:, :, -gen_len:]


def test():
    model = ValleNAR().cuda()

    phone_ids = torch.LongTensor([1, 2, 3, 4, 5]).reshape(1, -1).cuda()
    phone_mask = torch.LongTensor([1, 1, 1, 1, 1]).reshape(1, -1).cuda()
    target_ids = torch.randint(high=1024, size=(8, 1, 250), dtype=torch.long).cuda()
    target_mask = torch.ones(1, 250, dtype=torch.long).cuda()
    optimizer = torch.optim.Adam(model.parameters(), lr=3e-4)

    for i in range(200):
        optimizer.zero_grad()
        out = model(
            phone_ids=phone_ids,
            phone_mask=phone_mask,
            target_ids=target_ids,
            target_mask=target_mask,
            # target_quantization_layer=1+i%6,
        )
        loss = out.loss

        loss.backward()

        optimizer.step()

        print(f"iter={i}, {loss}.")
    target_ids_short = target_ids[:, :, :240]

    model.eval()
    sampled = model.sample_hf(
        phone_ids, prompt_ids=target_ids_short, first_stage_ids=target_ids[0, :, 240:]
    )

    print(target_ids[:, :, -10:])
    print(sampled)

    print((sampled == target_ids[:, :, -10:]).all())


if __name__ == "__main__":
    test()