File size: 12,385 Bytes
c968fc3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
# Copyright (c) 2024 Amphion.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

import torch
import numpy as np
import torch.nn as nn
import math
from einops import rearrange
from models.tts.maskgct.llama_nar import DiffLlamaPrefix


def top_k(logits, thres=0.9):
    k = math.ceil((1 - thres) * logits.shape[-1])
    val, ind = logits.topk(k, dim=-1)
    probs = torch.full_like(logits, float("-inf"))
    probs.scatter_(2, ind, val)
    return probs


def log(t, eps=1e-10):
    return torch.log(t + eps)


def gumbel_noise(t):
    noise = torch.zeros_like(t).uniform_(0, 1)
    return -log(-log(noise))


def gumbel_sample(t, temperature=1.0, dim=-1):
    return ((t / max(temperature, 1e-10)) + gumbel_noise(t)).argmax(dim=dim)


class MaskGCT_T2S(nn.Module):
    def __init__(
        self,
        hidden_size=1024,
        num_layers=16,
        num_heads=16,
        cfg_scale=0.2,
        cond_codebook_size=8192,
        cond_dim=1024,
        cfg=None,
    ):
        super().__init__()

        hidden_size = (
            cfg.hidden_size
            if cfg is not None and hasattr(cfg, "hidden_size")
            else hidden_size
        )
        num_layers = (
            cfg.num_layers
            if cfg is not None and hasattr(cfg, "num_layers")
            else num_layers
        )
        num_heads = (
            cfg.num_heads
            if cfg is not None and hasattr(cfg, "num_heads")
            else num_heads
        )
        cfg_scale = (
            cfg.cfg_scale
            if cfg is not None and hasattr(cfg, "cfg_scale")
            else cfg_scale
        )
        cond_codebook_size = (
            cfg.cond_codebook_size
            if cfg is not None and hasattr(cfg, "cond_codebook_size")
            else cond_codebook_size
        )
        cond_dim = (
            cfg.cond_dim if cfg is not None and hasattr(cfg, "cond_dim") else cond_dim
        )

        self.hidden_size = hidden_size
        self.num_layers = num_layers
        self.num_heads = num_heads
        self.cfg_scale = cfg_scale
        self.cond_codebook_size = cond_codebook_size
        self.cond_dim = cond_dim

        self.mask_emb = nn.Embedding(1, self.hidden_size)

        self.to_logit = nn.Linear(self.hidden_size, self.cond_codebook_size)

        self.cond_emb = nn.Embedding(cond_codebook_size, self.hidden_size)

        self.phone_emb = nn.Embedding(1024, hidden_size, padding_idx=1023)

        self.reset_parameters()

        self.diff_estimator = DiffLlamaPrefix(
            hidden_size=hidden_size,
            num_heads=num_heads,
            num_layers=num_layers,
        )

    def mask_prob(self, t):
        return torch.sin(t * np.pi / 2).to(t.device)

    def forward_diffusion(self, x0, t):
        # x0: semantic tokens (B, T)
        new_t = t
        mask_prob = self.mask_prob(new_t)  # (B,)
        # if mask_prob[i] < 0.2, mask_prob[i] = 0.2
        mask_prob = torch.where(
            mask_prob < 0.2, torch.ones_like(mask_prob) * 0.2, mask_prob
        )
        mask_token = self.mask_emb(
            torch.LongTensor([0]).to(x0.device)
        )  # (1, hidden_size)

        xt = torch.zeros(x0.shape[0], x0.shape[1], self.hidden_size).to(x0.device)

        cfg_scale = self.cfg_scale

        #  a segment of r% sequence length is masked, where r ~ U[60, 100]
        if torch.rand(1) > cfg_scale:
            prompt_len = torch.randint(
                min(x0.shape[1] // 4, 5), int(x0.shape[1] * 0.4), (x0.shape[0],)
            ).to(
                x0.device
            )  # (B,)
        else:
            prompt_len = torch.zeros(x0.shape[0]).to(x0)  # (B,)

        # get is prompt
        is_prompt = torch.zeros_like(x0[:, :])  # (B, T)
        col_indices = (
            torch.arange(is_prompt.shape[1])
            .repeat(is_prompt.shape[0], 1)
            .to(prompt_len)
        )  # (B, T)
        is_prompt[col_indices < prompt_len.unsqueeze(1)] = 1  # (B, T) 1 if prompt

        # Add mask
        mask = torch.bernoulli(torch.ones_like(x0[:, :]) * mask_prob[..., None])
        mask[is_prompt.bool()] = 0
        mask_num = mask[:,].sum(dim=1, keepdim=False)
        all_zero_mask = (mask_num == 0).bool()
        row_indices_to_modify = torch.nonzero(all_zero_mask)
        mask[row_indices_to_modify, prompt_len[row_indices_to_modify]] = 1
        mask = mask[..., None]  # (B, T, 1)
        xt = (
            xt + mask * mask_token[:, None, :] + (1 - mask) * self.cond_emb(x0[:, :])
        )  # (B, T, hidden_size)

        return xt, new_t, mask, prompt_len, mask_prob

    def loss_t(self, x0, x_mask, t, phone_embedding=None, phone_mask=None):
        xt, new_t, mask, prompt_len, mask_prob = self.forward_diffusion(x0, t)
        # xt: (B, T, hidden_size)
        # new_t: (B,)
        # mask: (B, T, 1)   mask if 1, not mask if 0
        # prompt_len: (B,)
        # mask_prob: (B,)

        embeds = self.diff_estimator(
            xt, new_t, x_mask, phone_embedding=phone_embedding, phone_mask=phone_mask
        )  # (B, T, hidden_size)
        logits = self.to_logit(embeds)  # (B, T, codebook_size)

        # final mask used for loss calculation
        final_mask = mask * x_mask[..., None]  # (B, T, 1)

        return logits, final_mask, x0, prompt_len, mask_prob

    def compute_loss(self, x0, x_mask, phone_embedding=None, phone_mask=None):
        # x0: (B, T)
        # x_mask: (B, T) mask is 0 for padding
        t = torch.rand(x0.shape[0], device=x0.device, requires_grad=False)
        t = torch.clamp(t, 1e-5, 1.0)
        return self.loss_t(x0, x_mask, t, phone_embedding, phone_mask)

    def reset_parameters(self):
        def _reset_parameters(m):
            if isinstance(m, nn.MultiheadAttention):
                if m._qkv_same_embed_dim:
                    nn.init.normal_(m.in_proj_weight, std=0.02)
                else:
                    nn.init.normal_(m.q_proj_weight, std=0.02)
                    nn.init.normal_(m.k_proj_weight, std=0.02)
                    nn.init.normal_(m.v_proj_weight, std=0.02)

                if m.in_proj_bias is not None:
                    nn.init.constant_(m.in_proj_bias, 0.0)
                    nn.init.constant_(m.out_proj.bias, 0.0)
                if m.bias_k is not None:
                    nn.init.xavier_normal_(m.bias_k)
                if m.bias_v is not None:
                    nn.init.xavier_normal_(m.bias_v)

            elif (
                isinstance(m, nn.Conv1d)
                or isinstance(m, nn.ConvTranspose1d)
                or isinstance(m, nn.Conv2d)
                or isinstance(m, nn.ConvTranspose2d)
            ):
                m.weight.data.normal_(0.0, 0.02)

            elif isinstance(m, nn.Linear):
                m.weight.data.normal_(mean=0.0, std=0.02)
                if m.bias is not None:
                    m.bias.data.zero_()

            elif isinstance(m, nn.Embedding):
                m.weight.data.normal_(mean=0.0, std=0.02)
                if m.padding_idx is not None:
                    m.weight.data[m.padding_idx].zero_()

        self.apply(_reset_parameters)

    @torch.no_grad()
    def reverse_diffusion(
        self,
        prompt,
        target_len,
        phone_id,
        prompt_mask=None,
        temp=0.9,
        filter_thres=0.98,
        n_timesteps=40,
        cfg=1.0,
        rescale_cfg=1.0,
    ):
        # prompt: (B, T)
        phone_embedding = self.phone_emb(phone_id)

        prompt_code = prompt  # (B, prompt_len)
        prompt_len = prompt_code.shape[1]

        x_mask = torch.ones(prompt_code.shape[0], target_len).to(
            prompt_code.device
        )  # (B, target_len)
        phone_mask = torch.ones_like(phone_id)

        if prompt_mask == None:
            prompt_mask = torch.ones(prompt_code.shape[0], prompt_len).to(
                prompt_code.device
            )  # (B, prompt_len)

        cum = torch.zeros(x_mask.shape[0], x_mask.shape[1], self.hidden_size).to(
            x_mask.device
        )  # (B, T, hidden_size)

        bsz, seq_len, _ = cum.shape

        choice_temp = 1.0
        start_temp = temp  # temperature for sampling
        start_choice_temp = choice_temp  # temperature for choicing mask tokens

        xt = torch.LongTensor(bsz, seq_len).to(x_mask.device)

        steps = n_timesteps
        to_logit = self.to_logit
        cond_emb = self.cond_emb

        mask_token = self.mask_emb(torch.LongTensor([0]).to(xt.device))
        mask = torch.full((bsz, seq_len, 1), True).to(x_mask.device)  # (B, T, 1)
        seq = torch.full((bsz, seq_len), 0).to(x_mask.device)
        h = 1.0 / steps

        cur_prompt = 0
        cur_prompt = cur_prompt + cond_emb(prompt_code)

        t_list = [1.0 - i * h for i in range(steps)]
        t_list.append(0.0)
        for i in range(steps):
            t = t_list[i] * torch.ones(bsz).to(x_mask.device)
            token = cond_emb(seq)  # (B, T, hidden_size)
            cur = cum + mask * mask_token[:, None, :] + (~mask) * token

            xt_input = torch.cat([cur_prompt, cur], dim=1)  # (B, T, hidden_size)
            xt_mask = torch.cat(
                [prompt_mask, x_mask], dim=1
            )  # (B, T), mask is 0 for padding

            embeds = self.diff_estimator(
                xt_input,
                t,
                xt_mask,
                phone_embedding=phone_embedding,
                phone_mask=phone_mask,
            )
            embeds = embeds[:, prompt_len:, :]

            # classifier free guidance
            # phone_embedding=phone_embedding[:,phone_embedding.shape[1]:,:] means phone_embedding is None
            if cfg > 0:
                mask_embeds = self.diff_estimator(
                    cur,
                    t,
                    x_mask,
                    phone_embedding=phone_embedding[:, phone_embedding.shape[1] :, :],
                    phone_mask=phone_mask[:, prompt_len:],
                )
                pos_emb_std = embeds.std()  # std(g_cond)
                embeds = embeds + cfg * (embeds - mask_embeds)  # g_cfg
                rescale_embeds = embeds * pos_emb_std / embeds.std()  # g_final
                embeds = rescale_cfg * rescale_embeds + (1 - rescale_cfg) * embeds

            logits = to_logit(embeds)  # (B, T, codebook_size)
            annealing_scale = t_list[i]

            choice_temp = start_choice_temp * annealing_scale
            temp = start_temp * annealing_scale
            logits = top_k(logits, filter_thres)

            if i == steps - 1:
                # greedy
                if steps == 1:
                    temp = 0.2
                    sampled_ids = gumbel_sample(logits, temperature=max(temp, 1e-3))
                else:
                    sampled_ids = logits.argmax(dim=-1)

            else:
                # sampling
                sampled_ids = gumbel_sample(logits, temperature=max(temp, 1e-3))

            seq = torch.where(mask.squeeze(-1), sampled_ids, seq)

            scores = logits.softmax(dim=-1)
            scores = scores.gather(2, rearrange(sampled_ids, "b n -> b n 1"))
            scores = rearrange(scores, "b n 1 -> b n")

            scores = choice_temp * gumbel_noise(scores) + scores
            scores = 1 - scores

            next_t = t_list[i + 1] * torch.ones(bsz).to(x_mask.device)

            next_mask_num = (self.mask_prob(next_t) * seq_len).long()[0].item()

            if next_mask_num == 0:
                break
            scores = scores.masked_fill(
                ~mask.squeeze(-1), -torch.finfo(scores.dtype).max
            )

            mask_indices = scores.topk(next_mask_num, dim=-1).indices
            mask = torch.zeros_like(scores, dtype=torch.bool).scatter(
                1, mask_indices, True
            )
            seq = seq.masked_fill(mask, 0)

            mask = mask.unsqueeze(-1)

        cum = cum + cond_emb(seq)
        xt = seq

        return xt

    def forward(self, x0, x_mask, phone_id=None, phone_mask=None):
        # x0: (B, T)
        # x_mask: (B, T) mask is 0 for padding

        phone_embedding = self.phone_emb(phone_id)

        logits, final_mask, x0, prompt_len, mask_prob = self.compute_loss(
            x0, x_mask, phone_embedding, phone_mask=phone_mask
        )
        return logits, final_mask, x0, prompt_len, mask_prob