Spaces:
Running
on
Zero
Running
on
Zero
File size: 12,385 Bytes
c968fc3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 |
# Copyright (c) 2024 Amphion.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import torch
import numpy as np
import torch.nn as nn
import math
from einops import rearrange
from models.tts.maskgct.llama_nar import DiffLlamaPrefix
def top_k(logits, thres=0.9):
k = math.ceil((1 - thres) * logits.shape[-1])
val, ind = logits.topk(k, dim=-1)
probs = torch.full_like(logits, float("-inf"))
probs.scatter_(2, ind, val)
return probs
def log(t, eps=1e-10):
return torch.log(t + eps)
def gumbel_noise(t):
noise = torch.zeros_like(t).uniform_(0, 1)
return -log(-log(noise))
def gumbel_sample(t, temperature=1.0, dim=-1):
return ((t / max(temperature, 1e-10)) + gumbel_noise(t)).argmax(dim=dim)
class MaskGCT_T2S(nn.Module):
def __init__(
self,
hidden_size=1024,
num_layers=16,
num_heads=16,
cfg_scale=0.2,
cond_codebook_size=8192,
cond_dim=1024,
cfg=None,
):
super().__init__()
hidden_size = (
cfg.hidden_size
if cfg is not None and hasattr(cfg, "hidden_size")
else hidden_size
)
num_layers = (
cfg.num_layers
if cfg is not None and hasattr(cfg, "num_layers")
else num_layers
)
num_heads = (
cfg.num_heads
if cfg is not None and hasattr(cfg, "num_heads")
else num_heads
)
cfg_scale = (
cfg.cfg_scale
if cfg is not None and hasattr(cfg, "cfg_scale")
else cfg_scale
)
cond_codebook_size = (
cfg.cond_codebook_size
if cfg is not None and hasattr(cfg, "cond_codebook_size")
else cond_codebook_size
)
cond_dim = (
cfg.cond_dim if cfg is not None and hasattr(cfg, "cond_dim") else cond_dim
)
self.hidden_size = hidden_size
self.num_layers = num_layers
self.num_heads = num_heads
self.cfg_scale = cfg_scale
self.cond_codebook_size = cond_codebook_size
self.cond_dim = cond_dim
self.mask_emb = nn.Embedding(1, self.hidden_size)
self.to_logit = nn.Linear(self.hidden_size, self.cond_codebook_size)
self.cond_emb = nn.Embedding(cond_codebook_size, self.hidden_size)
self.phone_emb = nn.Embedding(1024, hidden_size, padding_idx=1023)
self.reset_parameters()
self.diff_estimator = DiffLlamaPrefix(
hidden_size=hidden_size,
num_heads=num_heads,
num_layers=num_layers,
)
def mask_prob(self, t):
return torch.sin(t * np.pi / 2).to(t.device)
def forward_diffusion(self, x0, t):
# x0: semantic tokens (B, T)
new_t = t
mask_prob = self.mask_prob(new_t) # (B,)
# if mask_prob[i] < 0.2, mask_prob[i] = 0.2
mask_prob = torch.where(
mask_prob < 0.2, torch.ones_like(mask_prob) * 0.2, mask_prob
)
mask_token = self.mask_emb(
torch.LongTensor([0]).to(x0.device)
) # (1, hidden_size)
xt = torch.zeros(x0.shape[0], x0.shape[1], self.hidden_size).to(x0.device)
cfg_scale = self.cfg_scale
# a segment of r% sequence length is masked, where r ~ U[60, 100]
if torch.rand(1) > cfg_scale:
prompt_len = torch.randint(
min(x0.shape[1] // 4, 5), int(x0.shape[1] * 0.4), (x0.shape[0],)
).to(
x0.device
) # (B,)
else:
prompt_len = torch.zeros(x0.shape[0]).to(x0) # (B,)
# get is prompt
is_prompt = torch.zeros_like(x0[:, :]) # (B, T)
col_indices = (
torch.arange(is_prompt.shape[1])
.repeat(is_prompt.shape[0], 1)
.to(prompt_len)
) # (B, T)
is_prompt[col_indices < prompt_len.unsqueeze(1)] = 1 # (B, T) 1 if prompt
# Add mask
mask = torch.bernoulli(torch.ones_like(x0[:, :]) * mask_prob[..., None])
mask[is_prompt.bool()] = 0
mask_num = mask[:,].sum(dim=1, keepdim=False)
all_zero_mask = (mask_num == 0).bool()
row_indices_to_modify = torch.nonzero(all_zero_mask)
mask[row_indices_to_modify, prompt_len[row_indices_to_modify]] = 1
mask = mask[..., None] # (B, T, 1)
xt = (
xt + mask * mask_token[:, None, :] + (1 - mask) * self.cond_emb(x0[:, :])
) # (B, T, hidden_size)
return xt, new_t, mask, prompt_len, mask_prob
def loss_t(self, x0, x_mask, t, phone_embedding=None, phone_mask=None):
xt, new_t, mask, prompt_len, mask_prob = self.forward_diffusion(x0, t)
# xt: (B, T, hidden_size)
# new_t: (B,)
# mask: (B, T, 1) mask if 1, not mask if 0
# prompt_len: (B,)
# mask_prob: (B,)
embeds = self.diff_estimator(
xt, new_t, x_mask, phone_embedding=phone_embedding, phone_mask=phone_mask
) # (B, T, hidden_size)
logits = self.to_logit(embeds) # (B, T, codebook_size)
# final mask used for loss calculation
final_mask = mask * x_mask[..., None] # (B, T, 1)
return logits, final_mask, x0, prompt_len, mask_prob
def compute_loss(self, x0, x_mask, phone_embedding=None, phone_mask=None):
# x0: (B, T)
# x_mask: (B, T) mask is 0 for padding
t = torch.rand(x0.shape[0], device=x0.device, requires_grad=False)
t = torch.clamp(t, 1e-5, 1.0)
return self.loss_t(x0, x_mask, t, phone_embedding, phone_mask)
def reset_parameters(self):
def _reset_parameters(m):
if isinstance(m, nn.MultiheadAttention):
if m._qkv_same_embed_dim:
nn.init.normal_(m.in_proj_weight, std=0.02)
else:
nn.init.normal_(m.q_proj_weight, std=0.02)
nn.init.normal_(m.k_proj_weight, std=0.02)
nn.init.normal_(m.v_proj_weight, std=0.02)
if m.in_proj_bias is not None:
nn.init.constant_(m.in_proj_bias, 0.0)
nn.init.constant_(m.out_proj.bias, 0.0)
if m.bias_k is not None:
nn.init.xavier_normal_(m.bias_k)
if m.bias_v is not None:
nn.init.xavier_normal_(m.bias_v)
elif (
isinstance(m, nn.Conv1d)
or isinstance(m, nn.ConvTranspose1d)
or isinstance(m, nn.Conv2d)
or isinstance(m, nn.ConvTranspose2d)
):
m.weight.data.normal_(0.0, 0.02)
elif isinstance(m, nn.Linear):
m.weight.data.normal_(mean=0.0, std=0.02)
if m.bias is not None:
m.bias.data.zero_()
elif isinstance(m, nn.Embedding):
m.weight.data.normal_(mean=0.0, std=0.02)
if m.padding_idx is not None:
m.weight.data[m.padding_idx].zero_()
self.apply(_reset_parameters)
@torch.no_grad()
def reverse_diffusion(
self,
prompt,
target_len,
phone_id,
prompt_mask=None,
temp=0.9,
filter_thres=0.98,
n_timesteps=40,
cfg=1.0,
rescale_cfg=1.0,
):
# prompt: (B, T)
phone_embedding = self.phone_emb(phone_id)
prompt_code = prompt # (B, prompt_len)
prompt_len = prompt_code.shape[1]
x_mask = torch.ones(prompt_code.shape[0], target_len).to(
prompt_code.device
) # (B, target_len)
phone_mask = torch.ones_like(phone_id)
if prompt_mask == None:
prompt_mask = torch.ones(prompt_code.shape[0], prompt_len).to(
prompt_code.device
) # (B, prompt_len)
cum = torch.zeros(x_mask.shape[0], x_mask.shape[1], self.hidden_size).to(
x_mask.device
) # (B, T, hidden_size)
bsz, seq_len, _ = cum.shape
choice_temp = 1.0
start_temp = temp # temperature for sampling
start_choice_temp = choice_temp # temperature for choicing mask tokens
xt = torch.LongTensor(bsz, seq_len).to(x_mask.device)
steps = n_timesteps
to_logit = self.to_logit
cond_emb = self.cond_emb
mask_token = self.mask_emb(torch.LongTensor([0]).to(xt.device))
mask = torch.full((bsz, seq_len, 1), True).to(x_mask.device) # (B, T, 1)
seq = torch.full((bsz, seq_len), 0).to(x_mask.device)
h = 1.0 / steps
cur_prompt = 0
cur_prompt = cur_prompt + cond_emb(prompt_code)
t_list = [1.0 - i * h for i in range(steps)]
t_list.append(0.0)
for i in range(steps):
t = t_list[i] * torch.ones(bsz).to(x_mask.device)
token = cond_emb(seq) # (B, T, hidden_size)
cur = cum + mask * mask_token[:, None, :] + (~mask) * token
xt_input = torch.cat([cur_prompt, cur], dim=1) # (B, T, hidden_size)
xt_mask = torch.cat(
[prompt_mask, x_mask], dim=1
) # (B, T), mask is 0 for padding
embeds = self.diff_estimator(
xt_input,
t,
xt_mask,
phone_embedding=phone_embedding,
phone_mask=phone_mask,
)
embeds = embeds[:, prompt_len:, :]
# classifier free guidance
# phone_embedding=phone_embedding[:,phone_embedding.shape[1]:,:] means phone_embedding is None
if cfg > 0:
mask_embeds = self.diff_estimator(
cur,
t,
x_mask,
phone_embedding=phone_embedding[:, phone_embedding.shape[1] :, :],
phone_mask=phone_mask[:, prompt_len:],
)
pos_emb_std = embeds.std() # std(g_cond)
embeds = embeds + cfg * (embeds - mask_embeds) # g_cfg
rescale_embeds = embeds * pos_emb_std / embeds.std() # g_final
embeds = rescale_cfg * rescale_embeds + (1 - rescale_cfg) * embeds
logits = to_logit(embeds) # (B, T, codebook_size)
annealing_scale = t_list[i]
choice_temp = start_choice_temp * annealing_scale
temp = start_temp * annealing_scale
logits = top_k(logits, filter_thres)
if i == steps - 1:
# greedy
if steps == 1:
temp = 0.2
sampled_ids = gumbel_sample(logits, temperature=max(temp, 1e-3))
else:
sampled_ids = logits.argmax(dim=-1)
else:
# sampling
sampled_ids = gumbel_sample(logits, temperature=max(temp, 1e-3))
seq = torch.where(mask.squeeze(-1), sampled_ids, seq)
scores = logits.softmax(dim=-1)
scores = scores.gather(2, rearrange(sampled_ids, "b n -> b n 1"))
scores = rearrange(scores, "b n 1 -> b n")
scores = choice_temp * gumbel_noise(scores) + scores
scores = 1 - scores
next_t = t_list[i + 1] * torch.ones(bsz).to(x_mask.device)
next_mask_num = (self.mask_prob(next_t) * seq_len).long()[0].item()
if next_mask_num == 0:
break
scores = scores.masked_fill(
~mask.squeeze(-1), -torch.finfo(scores.dtype).max
)
mask_indices = scores.topk(next_mask_num, dim=-1).indices
mask = torch.zeros_like(scores, dtype=torch.bool).scatter(
1, mask_indices, True
)
seq = seq.masked_fill(mask, 0)
mask = mask.unsqueeze(-1)
cum = cum + cond_emb(seq)
xt = seq
return xt
def forward(self, x0, x_mask, phone_id=None, phone_mask=None):
# x0: (B, T)
# x_mask: (B, T) mask is 0 for padding
phone_embedding = self.phone_emb(phone_id)
logits, final_mask, x0, prompt_len, mask_prob = self.compute_loss(
x0, x_mask, phone_embedding, phone_mask=phone_mask
)
return logits, final_mask, x0, prompt_len, mask_prob
|