File size: 9,001 Bytes
c968fc3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
# Copyright (c) 2023 Amphion.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

# This code is modified from https://github.com/svc-develop-team/so-vits-svc/blob/4.1-Stable/models.py
import copy
import torch
from torch import nn
from torch.nn import functional as F

from utils.util import *

from modules.transformer.attentions import Encoder
from models.tts.vits.vits import ResidualCouplingBlock, PosteriorEncoder
from models.vocoders.gan.generator.bigvgan import BigVGAN
from models.vocoders.gan.generator.hifigan import HiFiGAN
from models.vocoders.gan.generator.nsfhifigan import NSFHiFiGAN
from models.vocoders.gan.generator.melgan import MelGAN
from models.vocoders.gan.generator.apnet import APNet
from modules.encoder.condition_encoder import ConditionEncoder


def slice_pitch_segments(x, ids_str, segment_size=4):
    ret = torch.zeros_like(x[:, :segment_size])
    for i in range(x.size(0)):
        idx_str = ids_str[i]
        idx_end = idx_str + segment_size
        ret[i] = x[i, idx_str:idx_end]
    return ret


def rand_slice_segments_with_pitch(x, pitch, x_lengths=None, segment_size=4):
    b, d, t = x.size()
    if x_lengths is None:
        x_lengths = t
    ids_str_max = x_lengths - segment_size + 1
    ids_str = (torch.rand([b]).to(device=x.device) * ids_str_max).to(dtype=torch.long)
    ret = slice_segments(x, ids_str, segment_size)
    ret_pitch = slice_pitch_segments(pitch, ids_str, segment_size)
    return ret, ret_pitch, ids_str


class ContentEncoder(nn.Module):
    def __init__(
        self,
        out_channels,
        hidden_channels,
        kernel_size,
        n_layers,
        gin_channels=0,
        filter_channels=None,
        n_heads=None,
        p_dropout=None,
    ):
        super().__init__()
        self.out_channels = out_channels
        self.hidden_channels = hidden_channels
        self.kernel_size = kernel_size
        self.n_layers = n_layers
        self.gin_channels = gin_channels

        self.f0_emb = nn.Embedding(256, hidden_channels)

        self.enc_ = Encoder(
            hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout
        )

        self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)

    # condition_encoder ver.
    def forward(self, x, x_mask, noice_scale=1):
        x = self.enc_(x * x_mask, x_mask)
        stats = self.proj(x) * x_mask
        m, logs = torch.split(stats, self.out_channels, dim=1)
        z = (m + torch.randn_like(m) * torch.exp(logs) * noice_scale) * x_mask

        return z, m, logs, x_mask


class SynthesizerTrn(nn.Module):
    """
    Synthesizer for Training
    """

    def __init__(self, spec_channels, segment_size, cfg):
        super().__init__()
        self.spec_channels = spec_channels
        self.segment_size = segment_size
        self.cfg = cfg
        self.inter_channels = cfg.model.vits.inter_channels
        self.hidden_channels = cfg.model.vits.hidden_channels
        self.filter_channels = cfg.model.vits.filter_channels
        self.n_heads = cfg.model.vits.n_heads
        self.n_layers = cfg.model.vits.n_layers
        self.kernel_size = cfg.model.vits.kernel_size
        self.p_dropout = cfg.model.vits.p_dropout
        self.n_flow_layer = cfg.model.vits.n_flow_layer
        self.gin_channels = cfg.model.vits.gin_channels
        self.n_speakers = cfg.model.vits.n_speakers

        # f0
        self.n_bins = cfg.preprocess.pitch_bin
        self.f0_min = cfg.preprocess.f0_min
        self.f0_max = cfg.preprocess.f0_max

        # TODO: sort out the config
        self.cfg.model.condition_encoder.f0_min = self.cfg.preprocess.f0_min
        self.cfg.model.condition_encoder.f0_max = self.cfg.preprocess.f0_max
        self.condition_encoder = ConditionEncoder(self.cfg.model.condition_encoder)

        self.emb_g = nn.Embedding(self.n_speakers, self.gin_channels)

        self.enc_p = ContentEncoder(
            self.inter_channels,
            self.hidden_channels,
            filter_channels=self.filter_channels,
            n_heads=self.n_heads,
            n_layers=self.n_layers,
            kernel_size=self.kernel_size,
            p_dropout=self.p_dropout,
        )

        assert cfg.model.generator in [
            "bigvgan",
            "hifigan",
            "melgan",
            "nsfhifigan",
            "apnet",
        ]
        self.dec_name = cfg.model.generator
        temp_cfg = copy.deepcopy(cfg)
        temp_cfg.preprocess.n_mel = self.inter_channels
        if cfg.model.generator == "bigvgan":
            temp_cfg.model.bigvgan = cfg.model.generator_config.bigvgan
            self.dec = BigVGAN(temp_cfg)
        elif cfg.model.generator == "hifigan":
            temp_cfg.model.hifigan = cfg.model.generator_config.hifigan
            self.dec = HiFiGAN(temp_cfg)
        elif cfg.model.generator == "melgan":
            temp_cfg.model.melgan = cfg.model.generator_config.melgan
            self.dec = MelGAN(temp_cfg)
        elif cfg.model.generator == "nsfhifigan":
            temp_cfg.model.nsfhifigan = cfg.model.generator_config.nsfhifigan
            self.dec = NSFHiFiGAN(temp_cfg)  # TODO: nsf need f0
        elif cfg.model.generator == "apnet":
            temp_cfg.model.apnet = cfg.model.generator_config.apnet
            self.dec = APNet(temp_cfg)

        self.enc_q = PosteriorEncoder(
            self.spec_channels,
            self.inter_channels,
            self.hidden_channels,
            5,
            1,
            16,
            gin_channels=self.gin_channels,
        )

        self.flow = ResidualCouplingBlock(
            self.inter_channels,
            self.hidden_channels,
            5,
            1,
            self.n_flow_layer,
            gin_channels=self.gin_channels,
        )

    def forward(self, data):
        """VitsSVC forward function.

        Args:
            data (dict): condition data & audio data, including:
            B: batch size, T: target length
            {
                "spk_id": [B, singer_table_size]
                "target_len": [B]
                "mask": [B, T, 1]
                "mel": [B, T, n_mel]
                "linear": [B, T, n_fft // 2 + 1]
                "frame_pitch": [B, T]
                "frame_uv": [B, T]
                "audio": [B, audio_len]
                "audio_len": [B]
                "contentvec_feat": [B, T, contentvec_dim]
                "whisper_feat": [B, T, whisper_dim]
                ...
            }
        """

        # TODO: elegantly handle the dimensions
        spec = data["linear"].transpose(1, 2)

        g = data["spk_id"]
        g = self.emb_g(g).transpose(1, 2)

        c_lengths = data["target_len"]
        spec_lengths = data["target_len"]
        f0 = data["frame_pitch"]

        # condition_encoder ver.
        x = self.condition_encoder(data).transpose(1, 2)
        x_mask = torch.unsqueeze(sequence_mask(c_lengths, f0.size(1)), 1).to(x.dtype)

        # prior encoder
        z_ptemp, m_p, logs_p, _ = self.enc_p(x, x_mask)
        # posterior encoder
        z, m_q, logs_q, spec_mask = self.enc_q(spec, spec_lengths, g=g)

        # flow
        z_p = self.flow(z, spec_mask, g=g)
        z_slice, pitch_slice, ids_slice = rand_slice_segments_with_pitch(
            z, f0, spec_lengths, self.segment_size
        )

        if self.dec_name == "nsfhifigan":
            o = self.dec(z_slice, f0=f0.float())
        elif self.dec_name == "apnet":
            _, _, _, _, o = self.dec(z_slice)
        else:
            o = self.dec(z_slice)

        outputs = {
            "y_hat": o,
            "ids_slice": ids_slice,
            "x_mask": x_mask,
            "z_mask": data["mask"].transpose(1, 2),
            "z": z,
            "z_p": z_p,
            "m_p": m_p,
            "logs_p": logs_p,
            "m_q": m_q,
            "logs_q": logs_q,
        }
        return outputs

    @torch.no_grad()
    def infer(self, data, noise_scale=0.35, seed=52468):
        # c, f0, uv, g
        f0 = data["frame_pitch"]
        g = data["spk_id"]

        if f0.device == torch.device("cuda"):
            torch.cuda.manual_seed_all(seed)
        else:
            torch.manual_seed(seed)

        c_lengths = (torch.ones(f0.size(0)) * f0.size(-1)).to(f0.device)

        if g.dim() == 1:
            g = g.unsqueeze(0)
        g = self.emb_g(g).transpose(1, 2)

        # condition_encoder ver.
        x = self.condition_encoder(data).transpose(1, 2)
        x_mask = torch.unsqueeze(sequence_mask(c_lengths, f0.size(1)), 1).to(x.dtype)

        z_p, m_p, logs_p, c_mask = self.enc_p(x, x_mask, noice_scale=noise_scale)
        z = self.flow(z_p, c_mask, g=g, reverse=True)

        if self.dec_name == "nsfhifigan":
            o = self.dec(z * c_mask, f0=f0.float())
        elif self.dec_name == "apnet":
            _, _, _, _, o = self.dec(z * c_mask)
        else:
            o = self.dec(z * c_mask)
        return o, f0