Spaces:
Running
on
Zero
Running
on
Zero
File size: 3,533 Bytes
c968fc3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 |
# Copyright (c) 2023 Amphion.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import torch
import random
import numpy as np
import torchaudio
import librosa
from torch.nn import functional as F
from torch.nn.utils.rnn import pad_sequence
from utils.data_utils import *
from models.codec.codec_dataset import CodecDataset
class FAcodecDataset(torch.utils.data.Dataset):
def __init__(self, cfg, dataset, is_valid=False):
"""
Args:
cfg: config
dataset: dataset name
is_valid: whether to use train or valid dataset
"""
self.data_root_dir = cfg.dataset
self.data_list = []
# walk through the dataset directory recursively, save all files ends with .wav/.mp3/.opus/.flac/.m4a
for root, _, files in os.walk(self.data_root_dir):
for file in files:
if file.endswith((".wav", ".mp3", ".opus", ".flac", ".m4a")):
self.data_list.append(os.path.join(root, file))
self.sr = cfg.preprocess_params.sr
self.duration_range = cfg.preprocess_params.duration_range
self.to_mel = torchaudio.transforms.MelSpectrogram(
n_mels=cfg.preprocess_params.spect_params.n_mels,
n_fft=cfg.preprocess_params.spect_params.n_fft,
win_length=cfg.preprocess_params.spect_params.win_length,
hop_length=cfg.preprocess_params.spect_params.hop_length,
)
self.mean, self.std = -4, 4
def preprocess(self, wave):
wave_tensor = (
torch.from_numpy(wave).float() if isinstance(wave, np.ndarray) else wave
)
mel_tensor = self.to_mel(wave_tensor)
mel_tensor = (torch.log(1e-5 + mel_tensor.unsqueeze(0)) - self.mean) / self.std
return mel_tensor
def __len__(self):
# return len(self.data_list)
return len(self.data_list) # return a fixed number for testing
def __getitem__(self, index):
wave, _ = librosa.load(self.data_list[index], sr=self.sr)
wave = np.random.randn(self.sr * random.randint(*self.duration_range))
wave = wave / np.max(np.abs(wave))
mel = self.preprocess(wave).squeeze(0)
wave = torch.from_numpy(wave).float()
return wave, mel
class FAcodecCollator(object):
"""Zero-pads model inputs and targets based on number of frames per step"""
def __init__(self, cfg):
self.cfg = cfg
def __call__(self, batch):
# batch[0] = wave, mel, text, f0, speakerid
batch_size = len(batch)
# sort by mel length
lengths = [b[1].shape[1] for b in batch]
batch_indexes = np.argsort(lengths)[::-1]
batch = [batch[bid] for bid in batch_indexes]
nmels = batch[0][1].size(0)
max_mel_length = max([b[1].shape[1] for b in batch])
max_wave_length = max([b[0].size(0) for b in batch])
mels = torch.zeros((batch_size, nmels, max_mel_length)).float() - 10
waves = torch.zeros((batch_size, max_wave_length)).float()
mel_lengths = torch.zeros(batch_size).long()
wave_lengths = torch.zeros(batch_size).long()
for bid, (wave, mel) in enumerate(batch):
mel_size = mel.size(1)
mels[bid, :, :mel_size] = mel
waves[bid, : wave.size(0)] = wave
mel_lengths[bid] = mel_size
wave_lengths[bid] = wave.size(0)
return waves, mels, wave_lengths, mel_lengths
|