Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,595 Bytes
8c92a11 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 |
# VITS for Singing Voice Conversion
This is an implementation of VITS as acoustic model for end-to-end singing voice conversion. Adapted from [so-vits-svc](https://github.com/svc-develop-team/so-vits-svc), SoftVC content encoder is used to extract content features from the source audio. These feature vectors are directly fed into VITS without the need for conversion to a text-based intermediate representation.
There are four stages in total:
1. Data preparation
2. Features extraction
3. Training
4. Inference/conversion
> **NOTE:** You need to run every command of this recipe in the `Amphion` root path:
> ```bash
> cd Amphion
> ```
## 1. Data Preparation
### Dataset Download
By default, we utilize the five datasets for training: M4Singer, Opencpop, OpenSinger, SVCC, and VCTK. How to download them is detailed [here](../../datasets/README.md).
### Configuration
Specify the dataset paths in `exp_config.json`. Note that you can change the `dataset` list to use your preferred datasets.
```json
"dataset": [
"m4singer",
"opencpop",
"opensinger",
"svcc",
"vctk"
],
"dataset_path": {
// TODO: Fill in your dataset path
"m4singer": "[M4Singer dataset path]",
"opencpop": "[Opencpop dataset path]",
"opensinger": "[OpenSinger dataset path]",
"svcc": "[SVCC dataset path]",
"vctk": "[VCTK dataset path]"
},
```
## 2. Features Extraction
### Content-based Pretrained Models Download
By default, we utilize ContentVec and Whisper to extract content features. How to download them is detailed [here](../../../pretrained/README.md).
### Configuration
Specify the dataset path and the output path for saving the processed data and the training model in `exp_config.json`:
```json
// TODO: Fill in the output log path. The default value is "Amphion/ckpts/svc"
"log_dir": "ckpts/svc",
"preprocess": {
// TODO: Fill in the output data path. The default value is "Amphion/data"
"processed_dir": "data",
...
},
```
### Run
Run the `run.sh` as the preproces stage (set `--stage 1`).
```bash
sh egs/svc/VitsSVC/run.sh --stage 1
```
> **NOTE:** The `CUDA_VISIBLE_DEVICES` is set as `"0"` in default. You can change it when running `run.sh` by specifying such as `--gpu "1"`.
## 3. Training
### Configuration
We provide the default hyparameters in the `exp_config.json`. They can work on single NVIDIA-24g GPU. You can adjust them based on you GPU machines.
```json
"train": {
"batch_size": 32,
...
"adamw": {
"lr": 2.0e-4
},
...
}
```
### Run
Run the `run.sh` as the training stage (set `--stage 2`). Specify a experimental name to run the following command. The tensorboard logs and checkpoints will be saved in `Amphion/ckpts/svc/[YourExptName]`.
```bash
sh egs/svc/VitsSVC/run.sh --stage 2 --name [YourExptName]
```
> **NOTE:** The `CUDA_VISIBLE_DEVICES` is set as `"0"` in default. You can change it when running `run.sh` by specifying such as `--gpu "0,1,2,3"`.
## 4. Inference/Conversion
### Run
For inference/conversion, you need to specify the following configurations when running `run.sh`:
| Parameters | Description | Example |
| --------------------------------------------------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `--infer_expt_dir` | The experimental directory which contains `checkpoint` | `[Your path to save logs and checkpoints]/[YourExptName]` |
| `--infer_output_dir` | The output directory to save inferred audios. | `[Your path to save logs and checkpoints]/[YourExptName]/result` |
| `--infer_source_file` or `--infer_source_audio_dir` | The inference source (can be a json file or a dir). | The `infer_source_file` could be `[Your path to save processed data]/[YourDataset]/test.json`, and the `infer_source_audio_dir` is a folder which includes several audio files (*.wav, *.mp3 or *.flac). |
| `--infer_target_speaker` | The target speaker you want to convert into. You can refer to `[Your path to save logs and checkpoints]/[YourExptName]/singers.json` to choose a trained speaker. | For opencpop dataset, the speaker name would be `opencpop_female1`. |
| `--infer_key_shift` | How many semitones you want to transpose. | `"autoshfit"` (by default), `3`, `-3`, etc. |
For example, if you want to make `opencpop_female1` sing the songs in the `[Your Audios Folder]`, just run:
```bash
sh egs/svc/VitsSVC/run.sh --stage 3 --gpu "0" \
--infer_expt_dir Amphion/ckpts/svc/[YourExptName] \
--infer_output_dir Amphion/ckpts/svc/[YourExptName]/result \
--infer_source_audio_dir [Your Audios Folder] \
--infer_target_speaker "opencpop_female1" \
--infer_key_shift "autoshift"
``` |