Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,220 Bytes
c968fc3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 |
# Copyright (c) 2023 Amphion.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
class ResBlock(nn.Module):
def __init__(self, dims):
super().__init__()
self.conv1 = nn.Conv1d(dims, dims, kernel_size=1, bias=False)
self.conv2 = nn.Conv1d(dims, dims, kernel_size=1, bias=False)
self.batch_norm1 = nn.BatchNorm1d(dims)
self.batch_norm2 = nn.BatchNorm1d(dims)
def forward(self, x):
residual = x
x = self.conv1(x)
x = self.batch_norm1(x)
x = F.relu(x)
x = self.conv2(x)
x = self.batch_norm2(x)
x = x + residual
return x
class MelResNet(nn.Module):
def __init__(self, res_blocks, in_dims, compute_dims, res_out_dims, pad):
super().__init__()
kernel_size = pad * 2 + 1
self.conv_in = nn.Conv1d(
in_dims, compute_dims, kernel_size=kernel_size, bias=False
)
self.batch_norm = nn.BatchNorm1d(compute_dims)
self.layers = nn.ModuleList()
for i in range(res_blocks):
self.layers.append(ResBlock(compute_dims))
self.conv_out = nn.Conv1d(compute_dims, res_out_dims, kernel_size=1)
def forward(self, x):
x = self.conv_in(x)
x = self.batch_norm(x)
x = F.relu(x)
for f in self.layers:
x = f(x)
x = self.conv_out(x)
return x
class Stretch2d(nn.Module):
def __init__(self, x_scale, y_scale):
super().__init__()
self.x_scale = x_scale
self.y_scale = y_scale
def forward(self, x):
b, c, h, w = x.size()
x = x.unsqueeze(-1).unsqueeze(3)
x = x.repeat(1, 1, 1, self.y_scale, 1, self.x_scale)
return x.view(b, c, h * self.y_scale, w * self.x_scale)
class UpsampleNetwork(nn.Module):
def __init__(
self, feat_dims, upsample_scales, compute_dims, res_blocks, res_out_dims, pad
):
super().__init__()
total_scale = np.cumproduct(upsample_scales)[-1]
self.indent = pad * total_scale
self.resnet = MelResNet(res_blocks, feat_dims, compute_dims, res_out_dims, pad)
self.resnet_stretch = Stretch2d(total_scale, 1)
self.up_layers = nn.ModuleList()
for scale in upsample_scales:
kernel_size = (1, scale * 2 + 1)
padding = (0, scale)
stretch = Stretch2d(scale, 1)
conv = nn.Conv2d(1, 1, kernel_size=kernel_size, padding=padding, bias=False)
conv.weight.data.fill_(1.0 / kernel_size[1])
self.up_layers.append(stretch)
self.up_layers.append(conv)
def forward(self, m):
aux = self.resnet(m).unsqueeze(1)
aux = self.resnet_stretch(aux)
aux = aux.squeeze(1)
m = m.unsqueeze(1)
for f in self.up_layers:
m = f(m)
m = m.squeeze(1)[:, :, self.indent : -self.indent]
return m.transpose(1, 2), aux.transpose(1, 2)
class WaveRNN(nn.Module):
def __init__(self, cfg):
super().__init__()
self.cfg = cfg
self.pad = self.cfg.VOCODER.MEL_FRAME_PAD
if self.cfg.VOCODER.MODE == "mu_law_quantize":
self.n_classes = 2**self.cfg.VOCODER.BITS
elif self.cfg.VOCODER.MODE == "mu_law" or self.cfg.VOCODER:
self.n_classes = 30
self._to_flatten = []
self.rnn_dims = self.cfg.VOCODER.RNN_DIMS
self.aux_dims = self.cfg.VOCODER.RES_OUT_DIMS // 4
self.hop_length = self.cfg.VOCODER.HOP_LENGTH
self.fc_dims = self.cfg.VOCODER.FC_DIMS
self.upsample_factors = self.cfg.VOCODER.UPSAMPLE_FACTORS
self.feat_dims = self.cfg.VOCODER.INPUT_DIM
self.compute_dims = self.cfg.VOCODER.COMPUTE_DIMS
self.res_out_dims = self.cfg.VOCODER.RES_OUT_DIMS
self.res_blocks = self.cfg.VOCODER.RES_BLOCKS
self.upsample = UpsampleNetwork(
self.feat_dims,
self.upsample_factors,
self.compute_dims,
self.res_blocks,
self.res_out_dims,
self.pad,
)
self.I = nn.Linear(self.feat_dims + self.aux_dims + 1, self.rnn_dims)
self.rnn1 = nn.GRU(self.rnn_dims, self.rnn_dims, batch_first=True)
self.rnn2 = nn.GRU(
self.rnn_dims + self.aux_dims, self.rnn_dims, batch_first=True
)
self._to_flatten += [self.rnn1, self.rnn2]
self.fc1 = nn.Linear(self.rnn_dims + self.aux_dims, self.fc_dims)
self.fc2 = nn.Linear(self.fc_dims + self.aux_dims, self.fc_dims)
self.fc3 = nn.Linear(self.fc_dims, self.n_classes)
self.num_params()
self._flatten_parameters()
def forward(self, x, mels):
device = next(self.parameters()).device
self._flatten_parameters()
batch_size = x.size(0)
h1 = torch.zeros(1, batch_size, self.rnn_dims, device=device)
h2 = torch.zeros(1, batch_size, self.rnn_dims, device=device)
mels, aux = self.upsample(mels)
aux_idx = [self.aux_dims * i for i in range(5)]
a1 = aux[:, :, aux_idx[0] : aux_idx[1]]
a2 = aux[:, :, aux_idx[1] : aux_idx[2]]
a3 = aux[:, :, aux_idx[2] : aux_idx[3]]
a4 = aux[:, :, aux_idx[3] : aux_idx[4]]
x = torch.cat([x.unsqueeze(-1), mels, a1], dim=2)
x = self.I(x)
res = x
x, _ = self.rnn1(x, h1)
x = x + res
res = x
x = torch.cat([x, a2], dim=2)
x, _ = self.rnn2(x, h2)
x = x + res
x = torch.cat([x, a3], dim=2)
x = F.relu(self.fc1(x))
x = torch.cat([x, a4], dim=2)
x = F.relu(self.fc2(x))
return self.fc3(x)
def num_params(self, print_out=True):
parameters = filter(lambda p: p.requires_grad, self.parameters())
parameters = sum([np.prod(p.size()) for p in parameters]) / 1_000_000
if print_out:
print("Trainable Parameters: %.3fM" % parameters)
return parameters
def _flatten_parameters(self):
[m.flatten_parameters() for m in self._to_flatten]
|