File size: 9,044 Bytes
c968fc3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
# Copyright (c) 2023 Amphion.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

import torch

import numpy as np
import torch.nn as nn
import torch.nn.functional as F

from torch.nn import Conv1d, ConvTranspose1d
from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm

from modules.neural_source_filter import *
from modules.vocoder_blocks import *


LRELU_SLOPE = 0.1


class ResBlock1(nn.Module):
    def __init__(self, cfg, channels, kernel_size=3, dilation=(1, 3, 5)):
        super(ResBlock1, self).__init__()
        self.cfg = cfg

        self.convs1 = nn.ModuleList(
            [
                weight_norm(
                    Conv1d(
                        channels,
                        channels,
                        kernel_size,
                        1,
                        dilation=dilation[0],
                        padding=get_padding(kernel_size, dilation[0]),
                    )
                ),
                weight_norm(
                    Conv1d(
                        channels,
                        channels,
                        kernel_size,
                        1,
                        dilation=dilation[1],
                        padding=get_padding(kernel_size, dilation[1]),
                    )
                ),
                weight_norm(
                    Conv1d(
                        channels,
                        channels,
                        kernel_size,
                        1,
                        dilation=dilation[2],
                        padding=get_padding(kernel_size, dilation[2]),
                    )
                ),
            ]
        )
        self.convs1.apply(init_weights)

        self.convs2 = nn.ModuleList(
            [
                weight_norm(
                    Conv1d(
                        channels,
                        channels,
                        kernel_size,
                        1,
                        dilation=1,
                        padding=get_padding(kernel_size, 1),
                    )
                ),
                weight_norm(
                    Conv1d(
                        channels,
                        channels,
                        kernel_size,
                        1,
                        dilation=1,
                        padding=get_padding(kernel_size, 1),
                    )
                ),
                weight_norm(
                    Conv1d(
                        channels,
                        channels,
                        kernel_size,
                        1,
                        dilation=1,
                        padding=get_padding(kernel_size, 1),
                    )
                ),
            ]
        )
        self.convs2.apply(init_weights)

    def forward(self, x):
        for c1, c2 in zip(self.convs1, self.convs2):
            xt = F.leaky_relu(x, LRELU_SLOPE)
            xt = c1(xt)
            xt = F.leaky_relu(xt, LRELU_SLOPE)
            xt = c2(xt)
            x = xt + x
        return x

    def remove_weight_norm(self):
        for l in self.convs1:
            remove_weight_norm(l)
        for l in self.convs2:
            remove_weight_norm(l)


class ResBlock2(nn.Module):
    def __init__(self, cfg, channels, kernel_size=3, dilation=(1, 3)):
        super(ResBlock1, self).__init__()
        self.cfg = cfg

        self.convs = nn.ModuleList(
            [
                weight_norm(
                    Conv1d(
                        channels,
                        channels,
                        kernel_size,
                        1,
                        dilation=dilation[0],
                        padding=get_padding(kernel_size, dilation[0]),
                    )
                ),
                weight_norm(
                    Conv1d(
                        channels,
                        channels,
                        kernel_size,
                        1,
                        dilation=dilation[1],
                        padding=get_padding(kernel_size, dilation[1]),
                    )
                ),
            ]
        )
        self.convs.apply(init_weights)

    def forward(self, x):
        for c in self.convs:
            xt = F.leaky_relu(x, LRELU_SLOPE)
            xt = c(xt)
            x = xt + x
        return x

    def remove_weight_norm(self):
        for l in self.convs:
            remove_weight_norm(l)


# This NSF Module is adopted from Xin Wang's NSF under the MIT License
# https://github.com/nii-yamagishilab/project-NN-Pytorch-scripts


class SourceModuleHnNSF(nn.Module):
    def __init__(
        self, fs, harmonic_num=0, amp=0.1, noise_std=0.003, voiced_threshold=0
    ):
        super(SourceModuleHnNSF, self).__init__()

        self.amp = amp
        self.noise_std = noise_std
        self.l_sin_gen = SineGen(fs, harmonic_num, amp, noise_std, voiced_threshold)

        self.l_linear = nn.Linear(harmonic_num + 1, 1)
        self.l_tanh = nn.Tanh()

    def forward(self, x, upp):
        sine_wavs, uv, _ = self.l_sin_gen(x, upp)
        sine_merge = self.l_tanh(self.l_linear(sine_wavs))
        return sine_merge


class NSFHiFiGAN(nn.Module):
    def __init__(self, cfg):
        super(NSFHiFiGAN, self).__init__()

        self.cfg = cfg
        self.num_kernels = len(self.cfg.model.nsfhifigan.resblock_kernel_sizes)
        self.num_upsamples = len(self.cfg.model.nsfhifigan.upsample_rates)
        self.m_source = SourceModuleHnNSF(
            fs=self.cfg.preprocess.sample_rate,
            harmonic_num=self.cfg.model.nsfhifigan.harmonic_num,
        )
        self.noise_convs = nn.ModuleList()
        self.conv_pre = weight_norm(
            Conv1d(
                self.cfg.preprocess.n_mel,
                self.cfg.model.nsfhifigan.upsample_initial_channel,
                7,
                1,
                padding=3,
            )
        )

        resblock = ResBlock1 if self.cfg.model.nsfhifigan.resblock == "1" else ResBlock2

        self.ups = nn.ModuleList()
        for i, (u, k) in enumerate(
            zip(
                self.cfg.model.nsfhifigan.upsample_rates,
                self.cfg.model.nsfhifigan.upsample_kernel_sizes,
            )
        ):
            c_cur = self.cfg.model.nsfhifigan.upsample_initial_channel // (2 ** (i + 1))
            self.ups.append(
                weight_norm(
                    ConvTranspose1d(
                        self.cfg.model.nsfhifigan.upsample_initial_channel // (2**i),
                        self.cfg.model.nsfhifigan.upsample_initial_channel
                        // (2 ** (i + 1)),
                        k,
                        u,
                        padding=(k - u) // 2,
                    )
                )
            )
            if i + 1 < len(self.cfg.model.nsfhifigan.upsample_rates):
                stride_f0 = int(
                    np.prod(self.cfg.model.nsfhifigan.upsample_rates[i + 1 :])
                )
                self.noise_convs.append(
                    Conv1d(
                        1,
                        c_cur,
                        kernel_size=stride_f0 * 2,
                        stride=stride_f0,
                        padding=stride_f0 // 2,
                    )
                )
            else:
                self.noise_convs.append(Conv1d(1, c_cur, kernel_size=1))

        self.resblocks = nn.ModuleList()
        ch = self.cfg.model.nsfhifigan.upsample_initial_channel
        for i in range(len(self.ups)):
            ch //= 2
            for j, (k, d) in enumerate(
                zip(
                    self.cfg.model.nsfhifigan.resblock_kernel_sizes,
                    self.cfg.model.nsfhifigan.resblock_dilation_sizes,
                )
            ):
                self.resblocks.append(resblock(cfg, ch, k, d))

        self.conv_post = weight_norm(Conv1d(ch, 1, 7, 1, padding=3))

        self.ups.apply(init_weights)
        self.conv_post.apply(init_weights)
        self.upp = int(np.prod(self.cfg.model.nsfhifigan.upsample_rates))

    def forward(self, x, f0):
        har_source = self.m_source(f0, self.upp).transpose(1, 2)
        x = self.conv_pre(x)
        for i in range(self.num_upsamples):
            x = F.leaky_relu(x, LRELU_SLOPE)
            x = self.ups[i](x)
            x_source = self.noise_convs[i](har_source)

            length = min(x.shape[-1], x_source.shape[-1])
            x = x[:, :, :length]
            x_source = x[:, :, :length]

            x = x + x_source
            xs = None
            for j in range(self.num_kernels):
                if xs is None:
                    xs = self.resblocks[i * self.num_kernels + j](x)
                else:
                    xs += self.resblocks[i * self.num_kernels + j](x)
            x = xs / self.num_kernels
        x = F.leaky_relu(x)
        x = self.conv_post(x)
        x = torch.tanh(x)

        return x