Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,924 Bytes
c968fc3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 |
# Copyright (c) 2023 Amphion.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import torch
from torch.autograd import Variable
import torch.nn.functional as F
@torch.jit.script
def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels):
n_channels_int = n_channels[0]
in_act = input_a + input_b
t_act = torch.tanh(in_act[:, :n_channels_int, :])
s_act = torch.sigmoid(in_act[:, n_channels_int:, :])
acts = t_act * s_act
return acts
class Invertible1x1Conv(torch.nn.Module):
"""
The layer outputs both the convolution, and the log determinant
of its weight matrix. If reverse=True it does convolution with
inverse
"""
def __init__(self, c):
super(Invertible1x1Conv, self).__init__()
self.conv = torch.nn.Conv1d(
c, c, kernel_size=1, stride=1, padding=0, bias=False
)
# Sample a random orthonormal matrix to initialize weights
W = torch.linalg.qr(torch.FloatTensor(c, c).normal_())[0]
# Ensure determinant is 1.0 not -1.0
if torch.det(W) < 0:
W[:, 0] = -1 * W[:, 0]
W = W.view(c, c, 1)
self.conv.weight.data = W
def forward(self, z, reverse=False):
# shape
batch_size, group_size, n_of_groups = z.size()
W = self.conv.weight.squeeze()
if reverse:
if not hasattr(self, "W_inverse"):
# Reverse computation
W_inverse = W.float().inverse()
W_inverse = Variable(W_inverse[..., None])
if z.type() == "torch.cuda.HalfTensor":
W_inverse = W_inverse.half()
self.W_inverse = W_inverse
z = F.conv1d(z, self.W_inverse, bias=None, stride=1, padding=0)
return z
else:
# Forward computation
log_det_W = batch_size * n_of_groups * torch.logdet(W)
z = self.conv(z)
return z, log_det_W
class WN(torch.nn.Module):
"""
This is the WaveNet like layer for the affine coupling. The primary difference
from WaveNet is the convolutions need not be causal. There is also no dilation
size reset. The dilation only doubles on each layer
"""
def __init__(
self, n_in_channels, n_mel_channels, n_layers, n_channels, kernel_size
):
super(WN, self).__init__()
assert kernel_size % 2 == 1
assert n_channels % 2 == 0
self.n_layers = n_layers
self.n_channels = n_channels
self.in_layers = torch.nn.ModuleList()
self.res_skip_layers = torch.nn.ModuleList()
start = torch.nn.Conv1d(n_in_channels, n_channels, 1)
start = torch.nn.utils.weight_norm(start, name="weight")
self.start = start
# Initializing last layer to 0 makes the affine coupling layers
# do nothing at first. This helps with training stability
end = torch.nn.Conv1d(n_channels, 2 * n_in_channels, 1)
end.weight.data.zero_()
end.bias.data.zero_()
self.end = end
cond_layer = torch.nn.Conv1d(n_mel_channels, 2 * n_channels * n_layers, 1)
self.cond_layer = torch.nn.utils.weight_norm(cond_layer, name="weight")
for i in range(n_layers):
dilation = 2**i
padding = int((kernel_size * dilation - dilation) / 2)
in_layer = torch.nn.Conv1d(
n_channels,
2 * n_channels,
kernel_size,
dilation=dilation,
padding=padding,
)
in_layer = torch.nn.utils.weight_norm(in_layer, name="weight")
self.in_layers.append(in_layer)
# last one is not necessary
if i < n_layers - 1:
res_skip_channels = 2 * n_channels
else:
res_skip_channels = n_channels
res_skip_layer = torch.nn.Conv1d(n_channels, res_skip_channels, 1)
res_skip_layer = torch.nn.utils.weight_norm(res_skip_layer, name="weight")
self.res_skip_layers.append(res_skip_layer)
def forward(self, forward_input):
audio, spect = forward_input
audio = self.start(audio)
output = torch.zeros_like(audio)
n_channels_tensor = torch.IntTensor([self.n_channels])
spect = self.cond_layer(spect)
for i in range(self.n_layers):
spect_offset = i * 2 * self.n_channels
acts = fused_add_tanh_sigmoid_multiply(
self.in_layers[i](audio),
spect[:, spect_offset : spect_offset + 2 * self.n_channels, :],
n_channels_tensor,
)
res_skip_acts = self.res_skip_layers[i](acts)
if i < self.n_layers - 1:
audio = audio + res_skip_acts[:, : self.n_channels, :]
output = output + res_skip_acts[:, self.n_channels :, :]
else:
output = output + res_skip_acts
return self.end(output)
class WaveGlow(torch.nn.Module):
def __init__(self, cfg):
super(WaveGlow, self).__init__()
self.cfg = cfg
self.upsample = torch.nn.ConvTranspose1d(
self.cfg.VOCODER.INPUT_DIM,
self.cfg.VOCODER.INPUT_DIM,
1024,
stride=256,
)
assert self.cfg.VOCODER.N_GROUP % 2 == 0
self.n_flows = self.cfg.VOCODER.N_FLOWS
self.n_group = self.cfg.VOCODER.N_GROUP
self.n_early_every = self.cfg.VOCODER.N_EARLY_EVERY
self.n_early_size = self.cfg.VOCODER.N_EARLY_SIZE
self.WN = torch.nn.ModuleList()
self.convinv = torch.nn.ModuleList()
n_half = int(self.cfg.VOCODER.N_GROUP / 2)
# Set up layers with the right sizes based on how many dimensions
# have been output already
n_remaining_channels = self.cfg.VOCODER.N_GROUP
for k in range(self.cfg.VOCODER.N_FLOWS):
if k % self.n_early_every == 0 and k > 0:
n_half = n_half - int(self.n_early_size / 2)
n_remaining_channels = n_remaining_channels - self.n_early_size
self.convinv.append(Invertible1x1Conv(n_remaining_channels))
self.WN.append(
WN(
n_half,
self.cfg.VOCODER.INPUT_DIM * self.cfg.VOCODER.N_GROUP,
self.cfg.VOCODER.N_LAYERS,
self.cfg.VOCODER.N_CHANNELS,
self.cfg.VOCODER.KERNEL_SIZE,
)
)
self.n_remaining_channels = n_remaining_channels # Useful during inference
def forward(self, forward_input):
"""
forward_input[0] = mel_spectrogram: batch x n_mel_channels x frames
forward_input[1] = audio: batch x time
"""
spect, audio = forward_input
# Upsample spectrogram to size of audio
spect = self.upsample(spect)
assert spect.size(2) >= audio.size(1)
if spect.size(2) > audio.size(1):
spect = spect[:, :, : audio.size(1)]
spect = spect.unfold(2, self.n_group, self.n_group).permute(0, 2, 1, 3)
spect = (
spect.contiguous().view(spect.size(0), spect.size(1), -1).permute(0, 2, 1)
)
audio = audio.unfold(1, self.n_group, self.n_group).permute(0, 2, 1)
output_audio = []
log_s_list = []
log_det_W_list = []
for k in range(self.n_flows):
if k % self.n_early_every == 0 and k > 0:
output_audio.append(audio[:, : self.n_early_size, :])
audio = audio[:, self.n_early_size :, :]
audio, log_det_W = self.convinv[k](audio)
log_det_W_list.append(log_det_W)
n_half = int(audio.size(1) / 2)
audio_0 = audio[:, :n_half, :]
audio_1 = audio[:, n_half:, :]
output = self.WN[k]((audio_0, spect))
log_s = output[:, n_half:, :]
b = output[:, :n_half, :]
audio_1 = torch.exp(log_s) * audio_1 + b
log_s_list.append(log_s)
audio = torch.cat([audio_0, audio_1], 1)
output_audio.append(audio)
return torch.cat(output_audio, 1), log_s_list, log_det_W_list
@staticmethod
def remove_weightnorm(model):
waveglow = model
for WN in waveglow.WN:
WN.start = torch.nn.utils.remove_weight_norm(WN.start)
WN.in_layers = remove(WN.in_layers)
WN.cond_layer = torch.nn.utils.remove_weight_norm(WN.cond_layer)
WN.res_skip_layers = remove(WN.res_skip_layers)
return waveglow
def remove(conv_list):
new_conv_list = torch.nn.ModuleList()
for old_conv in conv_list:
old_conv = torch.nn.utils.remove_weight_norm(old_conv)
new_conv_list.append(old_conv)
return new_conv_list
|