File size: 5,948 Bytes
c968fc3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
# This module is from [WeNet](https://github.com/wenet-e2e/wenet).

# ## Citations

# ```bibtex
# @inproceedings{yao2021wenet,
#   title={WeNet: Production oriented Streaming and Non-streaming End-to-End Speech Recognition Toolkit},
#   author={Yao, Zhuoyuan and Wu, Di and Wang, Xiong and Zhang, Binbin and Yu, Fan and Yang, Chao and Peng, Zhendong and Chen, Xiaoyu and Xie, Lei and Lei, Xin},
#   booktitle={Proc. Interspeech},
#   year={2021},
#   address={Brno, Czech Republic },
#   organization={IEEE}
# }

# @article{zhang2022wenet,
#   title={WeNet 2.0: More Productive End-to-End Speech Recognition Toolkit},
#   author={Zhang, Binbin and Wu, Di and Peng, Zhendong and Song, Xingchen and Yao, Zhuoyuan and Lv, Hang and Xie, Lei and Yang, Chao and Pan, Fuping and Niu, Jianwei},
#   journal={arXiv preprint arXiv:2203.15455},
#   year={2022}
# }
#

"""ScorerInterface implementation for CTC."""
import numpy as np
import torch

from modules.wenet_extractor.paraformer.search.ctc_prefix_score import CTCPrefixScore
from modules.wenet_extractor.paraformer.search.ctc_prefix_score import CTCPrefixScoreTH
from modules.wenet_extractor.paraformer.search.scorer_interface import (
    BatchPartialScorerInterface,
)


class CTCPrefixScorer(BatchPartialScorerInterface):
    """Decoder interface wrapper for CTCPrefixScore."""

    def __init__(self, ctc: torch.nn.Module, eos: int):
        """Initialize class.

        Args:
            ctc (torch.nn.Module): The CTC implementation.
                For example, :class:`espnet.nets.pytorch_backend.ctc.CTC`
            eos (int): The end-of-sequence id.

        """
        self.ctc = ctc
        self.eos = eos
        self.impl = None

    def init_state(self, x: torch.Tensor):
        """Get an initial state for decoding.

        Args:
            x (torch.Tensor): The encoded feature tensor

        Returns: initial state

        """
        logp = self.ctc.log_softmax(x.unsqueeze(0)).detach().squeeze(0).cpu().numpy()
        # TODO(karita): use CTCPrefixScoreTH
        self.impl = CTCPrefixScore(logp, 0, self.eos, np)
        return 0, self.impl.initial_state()

    def select_state(self, state, i, new_id=None):
        """Select state with relative ids in the main beam search.

        Args:
            state: Decoder state for prefix tokens
            i (int): Index to select a state in the main beam search
            new_id (int): New label id to select a state if necessary

        Returns:
            state: pruned state

        """
        if type(state) == tuple:
            if len(state) == 2:  # for CTCPrefixScore
                sc, st = state
                return sc[i], st[i]
            else:  # for CTCPrefixScoreTH (need new_id > 0)
                r, log_psi, f_min, f_max, scoring_idmap = state
                s = log_psi[i, new_id].expand(log_psi.size(1))
                if scoring_idmap is not None:
                    return r[:, :, i, scoring_idmap[i, new_id]], s, f_min, f_max
                else:
                    return r[:, :, i, new_id], s, f_min, f_max
        return None if state is None else state[i]

    def score_partial(self, y, ids, state, x):
        """Score new token.

        Args:
            y (torch.Tensor): 1D prefix token
            next_tokens (torch.Tensor): torch.int64 next token to score
            state: decoder state for prefix tokens
            x (torch.Tensor): 2D encoder feature that generates ys

        Returns:
            tuple[torch.Tensor, Any]:
                Tuple of a score tensor for y that has a shape
                `(len(next_tokens),)` and next state for ys

        """
        prev_score, state = state
        presub_score, new_st = self.impl(y.cpu(), ids.cpu(), state)
        tscore = torch.as_tensor(
            presub_score - prev_score, device=x.device, dtype=x.dtype
        )
        return tscore, (presub_score, new_st)

    def batch_init_state(self, x: torch.Tensor):
        """Get an initial state for decoding.

        Args:
            x (torch.Tensor): The encoded feature tensor

        Returns: initial state

        """
        logp = self.ctc.log_softmax(x.unsqueeze(0))  # assuming batch_size = 1
        xlen = torch.tensor([logp.size(1)])
        self.impl = CTCPrefixScoreTH(logp, xlen, 0, self.eos)
        return None

    def batch_score_partial(self, y, ids, state, x):
        """Score new token.

        Args:
            y (torch.Tensor): 1D prefix token
            ids (torch.Tensor): torch.int64 next token to score
            state: decoder state for prefix tokens
            x (torch.Tensor): 2D encoder feature that generates ys

        Returns:
            tuple[torch.Tensor, Any]:
                Tuple of a score tensor for y that has a shape
                `(len(next_tokens),)` and next state for ys

        """
        batch_state = (
            (
                torch.stack([s[0] for s in state], dim=2),
                torch.stack([s[1] for s in state]),
                state[0][2],
                state[0][3],
            )
            if state[0] is not None
            else None
        )
        return self.impl(y, batch_state, ids)

    def extend_prob(self, x: torch.Tensor):
        """Extend probs for decoding.

        This extension is for streaming decoding
        as in Eq (14) in https://arxiv.org/abs/2006.14941

        Args:
            x (torch.Tensor): The encoded feature tensor

        """
        logp = self.ctc.log_softmax(x.unsqueeze(0))
        self.impl.extend_prob(logp)

    def extend_state(self, state):
        """Extend state for decoding.

        This extension is for streaming decoding
        as in Eq (14) in https://arxiv.org/abs/2006.14941

        Args:
            state: The states of hyps

        Returns: exteded state

        """
        new_state = []
        for s in state:
            new_state.append(self.impl.extend_state(s))

        return new_state