File size: 3,668 Bytes
c968fc3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
# This module is from [WeNet](https://github.com/wenet-e2e/wenet).

# ## Citations

# ```bibtex
# @inproceedings{yao2021wenet,
#   title={WeNet: Production oriented Streaming and Non-streaming End-to-End Speech Recognition Toolkit},
#   author={Yao, Zhuoyuan and Wu, Di and Wang, Xiong and Zhang, Binbin and Yu, Fan and Yang, Chao and Peng, Zhendong and Chen, Xiaoyu and Xie, Lei and Lei, Xin},
#   booktitle={Proc. Interspeech},
#   year={2021},
#   address={Brno, Czech Republic },
#   organization={IEEE}
# }

# @article{zhang2022wenet,
#   title={WeNet 2.0: More Productive End-to-End Speech Recognition Toolkit},
#   author={Zhang, Binbin and Wu, Di and Peng, Zhendong and Song, Xingchen and Yao, Zhuoyuan and Lv, Hang and Xie, Lei and Yang, Chao and Pan, Fuping and Niu, Jianwei},
#   journal={arXiv preprint arXiv:2203.15455},
#   year={2022}
# }
#

"""Label smoothing module."""

import torch
from torch import nn


class LabelSmoothingLoss(nn.Module):
    """Label-smoothing loss.

    In a standard CE loss, the label's data distribution is:
    [0,1,2] ->
    [
        [1.0, 0.0, 0.0],
        [0.0, 1.0, 0.0],
        [0.0, 0.0, 1.0],
    ]

    In the smoothing version CE Loss,some probabilities
    are taken from the true label prob (1.0) and are divided
    among other labels.

    e.g.
    smoothing=0.1
    [0,1,2] ->
    [
        [0.9, 0.05, 0.05],
        [0.05, 0.9, 0.05],
        [0.05, 0.05, 0.9],
    ]

    Args:
        size (int): the number of class
        padding_idx (int): padding class id which will be ignored for loss
        smoothing (float): smoothing rate (0.0 means the conventional CE)
        normalize_length (bool):
            normalize loss by sequence length if True
            normalize loss by batch size if False
    """

    def __init__(
        self,
        size: int,
        padding_idx: int,
        smoothing: float,
        normalize_length: bool = False,
    ):
        """Construct an LabelSmoothingLoss object."""
        super(LabelSmoothingLoss, self).__init__()
        self.criterion = nn.KLDivLoss(reduction="none")
        self.padding_idx = padding_idx
        self.confidence = 1.0 - smoothing
        self.smoothing = smoothing
        self.size = size
        self.normalize_length = normalize_length

    def forward(self, x: torch.Tensor, target: torch.Tensor) -> torch.Tensor:
        """Compute loss between x and target.

        The model outputs and data labels tensors are flatten to
        (batch*seqlen, class) shape and a mask is applied to the
        padding part which should not be calculated for loss.

        Args:
            x (torch.Tensor): prediction (batch, seqlen, class)
            target (torch.Tensor):
                target signal masked with self.padding_id (batch, seqlen)
        Returns:
            loss (torch.Tensor) : The KL loss, scalar float value
        """
        assert x.size(2) == self.size
        batch_size = x.size(0)
        x = x.view(-1, self.size)
        target = target.view(-1)
        # use zeros_like instead of torch.no_grad() for true_dist,
        # since no_grad() can not be exported by JIT
        true_dist = torch.zeros_like(x)
        true_dist.fill_(self.smoothing / (self.size - 1))
        ignore = target == self.padding_idx  # (B,)
        total = len(target) - ignore.sum().item()
        target = target.masked_fill(ignore, 0)  # avoid -1 index
        true_dist.scatter_(1, target.unsqueeze(1), self.confidence)
        kl = self.criterion(torch.log_softmax(x, dim=1), true_dist)
        denom = total if self.normalize_length else batch_size
        return kl.masked_fill(ignore.unsqueeze(1), 0).sum() / denom