File size: 1,824 Bytes
c968fc3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
from typing import List

import torch


def basic_greedy_search(
    model: torch.nn.Module,
    encoder_out: torch.Tensor,
    encoder_out_lens: torch.Tensor,
    n_steps: int = 64,
) -> List[List[int]]:
    # fake padding
    padding = torch.zeros(1, 1).to(encoder_out.device)
    # sos
    pred_input_step = torch.tensor([model.blank]).reshape(1, 1)
    cache = model.predictor.init_state(1, method="zero", device=encoder_out.device)
    new_cache: List[torch.Tensor] = []
    t = 0
    hyps = []
    prev_out_nblk = True
    pred_out_step = None
    per_frame_max_noblk = n_steps
    per_frame_noblk = 0
    while t < encoder_out_lens:
        encoder_out_step = encoder_out[:, t : t + 1, :]  # [1, 1, E]
        if prev_out_nblk:
            step_outs = model.predictor.forward_step(
                pred_input_step, padding, cache
            )  # [1, 1, P]
            pred_out_step, new_cache = step_outs[0], step_outs[1]

        joint_out_step = model.joint(encoder_out_step, pred_out_step)  # [1,1,v]
        joint_out_probs = joint_out_step.log_softmax(dim=-1)

        joint_out_max = joint_out_probs.argmax(dim=-1).squeeze()  # []
        if joint_out_max != model.blank:
            hyps.append(joint_out_max.item())
            prev_out_nblk = True
            per_frame_noblk = per_frame_noblk + 1
            pred_input_step = joint_out_max.reshape(1, 1)
            # state_m, state_c =  clstate_out_m, state_out_c
            cache = new_cache

        if joint_out_max == model.blank or per_frame_noblk >= per_frame_max_noblk:
            if joint_out_max == model.blank:
                prev_out_nblk = False
            # TODO(Mddct): make t in chunk for streamming
            # or t should't be too lang to predict none blank
            t = t + 1
            per_frame_noblk = 0

    return [hyps]