File size: 8,648 Bytes
c968fc3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
# Copyright (c) 2023 Amphion.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

import torch
import torch.nn as nn
import torch.nn.functional as F

from modules.general.utils import Conv1d, normalization, zero_module
from .basic import UNetBlock


class AttentionBlock(UNetBlock):
    r"""A spatial transformer encoder block that allows spatial positions to attend
    to each other. Reference from `latent diffusion repo
    <https://github.com/Stability-AI/generative-models/blob/main/sgm/modules/attention.py#L531>`_.

    Args:
        channels: Number of channels in the input.
        num_head_channels: Number of channels per attention head.
        num_heads: Number of attention heads. Overrides ``num_head_channels`` if set.
        encoder_channels: Number of channels in the encoder output for cross-attention.
            If ``None``, then self-attention is performed.
        use_self_attention: Whether to use self-attention before cross-attention, only applicable if encoder_channels is set.
        dims: Number of spatial dimensions, i.e. 1 for temporal signals, 2 for images.
        h_dim: The dimension of the height, would be applied if ``dims`` is 2.
        encoder_hdim: The dimension of the height of the encoder output, would be applied if ``dims`` is 2.
        p_dropout: Dropout probability.
    """

    def __init__(
        self,
        channels: int,
        num_head_channels: int = 32,
        num_heads: int = -1,
        encoder_channels: int = None,
        use_self_attention: bool = False,
        dims: int = 1,
        h_dim: int = 100,
        encoder_hdim: int = 384,
        p_dropout: float = 0.0,
    ):
        super().__init__()

        self.channels = channels
        self.p_dropout = p_dropout
        self.dims = dims

        if dims == 1:
            self.channels = channels
        elif dims == 2:
            # We consider the channel as product of channel and height, i.e. C x H
            # This is because we want to apply attention on the audio signal, which is 1D
            self.channels = channels * h_dim
        else:
            raise ValueError(f"invalid number of dimensions: {dims}")

        if num_head_channels == -1:
            assert (
                self.channels % num_heads == 0
            ), f"q,k,v channels {self.channels} is not divisible by num_heads {num_heads}"
            self.num_heads = num_heads
            self.num_head_channels = self.channels // num_heads
        else:
            assert (
                self.channels % num_head_channels == 0
            ), f"q,k,v channels {self.channels} is not divisible by num_head_channels {num_head_channels}"
            self.num_heads = self.channels // num_head_channels
            self.num_head_channels = num_head_channels

        if encoder_channels is not None:
            self.use_self_attention = use_self_attention

            if dims == 1:
                self.encoder_channels = encoder_channels
            elif dims == 2:
                self.encoder_channels = encoder_channels * encoder_hdim
            else:
                raise ValueError(f"invalid number of dimensions: {dims}")

            if use_self_attention:
                self.self_attention = BasicAttentionBlock(
                    self.channels,
                    self.num_head_channels,
                    self.num_heads,
                    p_dropout=self.p_dropout,
                )
            self.cross_attention = BasicAttentionBlock(
                self.channels,
                self.num_head_channels,
                self.num_heads,
                self.encoder_channels,
                p_dropout=self.p_dropout,
            )
        else:
            self.encoder_channels = None
            self.self_attention = BasicAttentionBlock(
                self.channels,
                self.num_head_channels,
                self.num_heads,
                p_dropout=self.p_dropout,
            )

    def forward(self, x: torch.Tensor, encoder_output: torch.Tensor = None):
        r"""
        Args:
            x: input tensor with shape [B x ``channels`` x ...]
            encoder_output: feature tensor with shape [B x ``encoder_channels`` x ...], if ``None``, then self-attention is performed.

        Returns:
            output tensor with shape [B x ``channels`` x ...]
        """
        shape = x.size()
        x = x.reshape(shape[0], self.channels, -1).contiguous()

        if self.encoder_channels is None:
            assert (
                encoder_output is None
            ), "encoder_output must be None for self-attention."
            h = self.self_attention(x)

        else:
            assert (
                encoder_output is not None
            ), "encoder_output must be given for cross-attention."
            encoder_output = encoder_output.reshape(
                shape[0], self.encoder_channels, -1
            ).contiguous()

            if self.use_self_attention:
                x = self.self_attention(x)
            h = self.cross_attention(x, encoder_output)

        return h.reshape(*shape).contiguous()


class BasicAttentionBlock(nn.Module):
    def __init__(
        self,
        channels: int,
        num_head_channels: int = 32,
        num_heads: int = -1,
        context_channels: int = None,
        p_dropout: float = 0.0,
    ):
        super().__init__()

        self.channels = channels
        self.p_dropout = p_dropout
        self.context_channels = context_channels

        if num_head_channels == -1:
            assert (
                self.channels % num_heads == 0
            ), f"q,k,v channels {self.channels} is not divisible by num_heads {num_heads}"
            self.num_heads = num_heads
            self.num_head_channels = self.channels // num_heads
        else:
            assert (
                self.channels % num_head_channels == 0
            ), f"q,k,v channels {self.channels} is not divisible by num_head_channels {num_head_channels}"
            self.num_heads = self.channels // num_head_channels
            self.num_head_channels = num_head_channels

        if context_channels is not None:
            self.to_q = nn.Sequential(
                normalization(self.channels),
                Conv1d(self.channels, self.channels, 1),
            )
            self.to_kv = Conv1d(context_channels, 2 * self.channels, 1)
        else:
            self.to_qkv = nn.Sequential(
                normalization(self.channels),
                Conv1d(self.channels, 3 * self.channels, 1),
            )

        self.linear = Conv1d(self.channels, self.channels)

        self.proj_out = nn.Sequential(
            normalization(self.channels),
            Conv1d(self.channels, self.channels, 1),
            nn.GELU(),
            nn.Dropout(p=self.p_dropout),
            zero_module(Conv1d(self.channels, self.channels, 1)),
        )

    def forward(self, q: torch.Tensor, kv: torch.Tensor = None):
        r"""
        Args:
            q: input tensor with shape [B, ``channels``, L]
            kv: feature tensor with shape [B, ``context_channels``, T], if ``None``, then self-attention is performed.

        Returns:
            output tensor with shape [B, ``channels``, L]
        """
        N, C, L = q.size()

        if self.context_channels is not None:
            assert kv is not None, "kv must be given for cross-attention."

            q = (
                self.to_q(q)
                .reshape(self.num_heads, self.num_head_channels, -1)
                .transpose(-1, -2)
                .contiguous()
            )
            kv = (
                self.to_kv(kv)
                .reshape(2, self.num_heads, self.num_head_channels, -1)
                .transpose(-1, -2)
                .chunk(2)
            )
            k, v = (
                kv[0].squeeze(0).contiguous(),
                kv[1].squeeze(0).contiguous(),
            )

        else:
            qkv = (
                self.to_qkv(q)
                .reshape(3, self.num_heads, self.num_head_channels, -1)
                .transpose(-1, -2)
                .chunk(3)
            )
            q, k, v = (
                qkv[0].squeeze(0).contiguous(),
                qkv[1].squeeze(0).contiguous(),
                qkv[2].squeeze(0).contiguous(),
            )

        h = F.scaled_dot_product_attention(q, k, v, dropout_p=self.p_dropout).transpose(
            -1, -2
        )
        h = h.reshape(N, -1, L).contiguous()
        h = self.linear(h)

        x = q + h
        h = self.proj_out(x)

        return x + h