Spaces:
Running
on
Zero
Running
on
Zero
File size: 5,799 Bytes
c968fc3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 |
# Copyright (c) 2023 Amphion.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
# This model code is adopted from DiffWave/model.py under the Apache License
# https://github.com/lmnt-com/diffwave
# Only the config-related varaible names are changed.
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from math import sqrt
Linear = nn.Linear
ConvTranspose2d = nn.ConvTranspose2d
def Conv1d(*args, **kwargs):
layer = nn.Conv1d(*args, **kwargs)
nn.init.kaiming_normal_(layer.weight)
return layer
@torch.jit.script
def silu(x):
return x * torch.sigmoid(x)
class DiffusionEmbedding(nn.Module):
def __init__(self, max_steps):
super().__init__()
self.register_buffer(
"embedding", self._build_embedding(max_steps), persistent=False
)
self.projection1 = Linear(128, 512)
self.projection2 = Linear(512, 512)
def forward(self, diffusion_step):
if diffusion_step.dtype in [torch.int32, torch.int64]:
x = self.embedding[diffusion_step]
else:
x = self._lerp_embedding(diffusion_step)
x = self.projection1(x)
x = silu(x)
x = self.projection2(x)
x = silu(x)
return x
def _lerp_embedding(self, t):
low_idx = torch.floor(t).long()
high_idx = torch.ceil(t).long()
low = self.embedding[low_idx]
high = self.embedding[high_idx]
return low + (high - low) * (t - low_idx)
def _build_embedding(self, max_steps):
steps = torch.arange(max_steps).unsqueeze(1) # [T,1]
dims = torch.arange(64).unsqueeze(0) # [1,64]
table = steps * 10.0 ** (dims * 4.0 / 63.0) # [T,64]
table = torch.cat([torch.sin(table), torch.cos(table)], dim=1)
return table
class SpectrogramUpsampler(nn.Module):
def __init__(self, upsample_factors):
super().__init__()
self.conv1 = ConvTranspose2d(
1,
1,
[3, upsample_factors[0] * 2],
stride=[1, upsample_factors[0]],
padding=[1, upsample_factors[0] // 2],
)
self.conv2 = ConvTranspose2d(
1,
1,
[3, upsample_factors[1] * 2],
stride=[1, upsample_factors[1]],
padding=[1, upsample_factors[1] // 2],
)
def forward(self, x):
x = torch.unsqueeze(x, 1)
x = self.conv1(x)
x = F.leaky_relu(x, 0.4)
x = self.conv2(x)
x = F.leaky_relu(x, 0.4)
x = torch.squeeze(x, 1)
return x
class ResidualBlock(nn.Module):
def __init__(self, n_mels, residual_channels, dilation):
super().__init__()
self.dilated_conv = Conv1d(
residual_channels,
2 * residual_channels,
3,
padding=dilation,
dilation=dilation,
)
self.diffusion_projection = Linear(512, residual_channels)
self.conditioner_projection = Conv1d(n_mels, 2 * residual_channels, 1)
self.output_projection = Conv1d(residual_channels, 2 * residual_channels, 1)
def forward(self, x, diffusion_step, conditioner):
diffusion_step = self.diffusion_projection(diffusion_step).unsqueeze(-1)
y = x + diffusion_step
conditioner = self.conditioner_projection(conditioner)
y = self.dilated_conv(y) + conditioner
gate, filter = torch.chunk(y, 2, dim=1)
y = torch.sigmoid(gate) * torch.tanh(filter)
y = self.output_projection(y)
residual, skip = torch.chunk(y, 2, dim=1)
return (x + residual) / sqrt(2.0), skip
class DiffWave(nn.Module):
def __init__(self, cfg):
super().__init__()
self.cfg = cfg
self.cfg.model.diffwave.noise_schedule = np.linspace(
self.cfg.model.diffwave.noise_schedule_factors[0],
self.cfg.model.diffwave.noise_schedule_factors[1],
self.cfg.model.diffwave.noise_schedule_factors[2],
).tolist()
self.input_projection = Conv1d(1, self.cfg.model.diffwave.residual_channels, 1)
self.diffusion_embedding = DiffusionEmbedding(
len(self.cfg.model.diffwave.noise_schedule)
)
self.spectrogram_upsampler = SpectrogramUpsampler(
self.cfg.model.diffwave.upsample_factors
)
self.residual_layers = nn.ModuleList(
[
ResidualBlock(
self.cfg.preprocess.n_mel,
self.cfg.model.diffwave.residual_channels,
2 ** (i % self.cfg.model.diffwave.dilation_cycle_length),
)
for i in range(self.cfg.model.diffwave.residual_layers)
]
)
self.skip_projection = Conv1d(
self.cfg.model.diffwave.residual_channels,
self.cfg.model.diffwave.residual_channels,
1,
)
self.output_projection = Conv1d(self.cfg.model.diffwave.residual_channels, 1, 1)
nn.init.zeros_(self.output_projection.weight)
def forward(self, audio, diffusion_step, spectrogram):
x = audio.unsqueeze(1)
x = self.input_projection(x)
x = F.relu(x)
diffusion_step = self.diffusion_embedding(diffusion_step)
spectrogram = self.spectrogram_upsampler(spectrogram)
skip = None
for layer in self.residual_layers:
x, skip_connection = layer(x, diffusion_step, spectrogram)
skip = skip_connection if skip is None else skip_connection + skip
x = skip / sqrt(len(self.residual_layers))
x = self.skip_projection(x)
x = F.relu(x)
x = self.output_projection(x)
return x
|