File size: 6,324 Bytes
c968fc3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
# Copyright (c) 2023 Amphion.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

import torch
import torchaudio


class ValleInference(torch.nn.Module):
    def __init__(
        self,
        use_vocos=False,
        use_speechtokenizer=True,
        ar_path=None,
        nar_path=None,
        speechtokenizer_path=None,
        device="cuda",
    ):
        super().__init__()

        self.device = device

        # prepare pretrained VALLE AR model
        from .valle_ar import ValleAR

        self.ar_model = ValleAR(
            phone_vocab_size=300,
            target_vocab_size=1024,
            pad_token_id=1324,
            bos_target_id=1325,
            eos_target_id=1326,
            bos_phone_id=1327,
            eos_phone_id=1328,
            bos_prompt_id=1329,
            eos_prompt_id=1330,
            num_hidden_layers=16,
        )
        # change the following path to your trained model path
        assert ar_path is not None
        self.ar_model.load_state_dict(torch.load(ar_path, map_location="cpu"))
        self.ar_model.eval().to(self.device)

        # prepare pretrained VALLE NAR model
        from .valle_nar import ValleNAR

        self.nar_model = ValleNAR(
            phone_vocab_size=300,
            target_vocab_size=1024,
            pad_token_id=1324,
            bos_target_id=1325,
            eos_target_id=1326,
            bos_phone_id=1327,
            eos_phone_id=1328,
            bos_prompt_id=1329,
            eos_prompt_id=1330,
            num_hidden_layers=16,
        )
        assert nar_path is not None
        self.nar_model.load_state_dict(torch.load(nar_path, map_location="cpu"))
        self.nar_model.eval().to(self.device)

        # prepare codec encoder
        assert not (
            use_speechtokenizer and use_vocos
        ), "Only one of use_speechtokenizer and use_vocos can be True"
        self.use_speechtokenizer = use_speechtokenizer
        if use_speechtokenizer:
            from models.codec.speechtokenizer.model import SpeechTokenizer

            # download from https://huggingface.co./fnlp/SpeechTokenizer/tree/main/speechtokenizer_hubert_avg
            config_path = speechtokenizer_path + "/config.json"
            ckpt_path = speechtokenizer_path + "/SpeechTokenizer.pt"
            self.codec_encoder = SpeechTokenizer.load_from_checkpoint(
                config_path, ckpt_path
            )
            self.codec_encoder.eval()
            self.codec_encoder.to(device)
            print(f"Loaded SpeechTokenizer from {config_path} and {ckpt_path}")
        else:
            # use Encodec
            from encodec import EncodecModel

            self.codec_encoder = EncodecModel.encodec_model_24khz()
            self.codec_encoder.set_target_bandwidth(6.0)
            self.codec_encoder.to(self.device)
            if use_vocos:
                from vocos import Vocos

                self.codec_decoder = Vocos.from_pretrained(
                    "charactr/vocos-encodec-24khz"
                )
                self.codec_decoder.to(self.device)
                print("Loaded Vocos")
            print("Loaded EncodecModel")

        self.use_vocos = use_vocos

    def decode(self, vq_ids):
        """vq_ids.shape: [8, B, T],
        returns: [B, 1, T]"""
        if self.use_speechtokenizer:
            # infer speechtokenizer
            return self.codec_encoder.decode(vq_ids)  # [B, 1, T]
        else:
            if not self.use_vocos:
                # vocos decoder
                return self.codec_encoder.decode([(vq_ids.transpose(0, 1), None)])
            else:
                # encodec decoder
                features = self.codec_decoder.codes_to_features(vq_ids.squeeze(1))
                bandwidth_id = torch.tensor([2], device=vq_ids.device)
                return self.codec_decoder.decode(
                    features, bandwidth_id=bandwidth_id
                ).unsqueeze(0)

    def forward(self, batch, chunk_configs: list, return_prompt=False, prompt_len=None):
        """batch: dict(
            speech: [B, T]
            phone_ids: [B, T]
        )
        returns: [B, 1, T] audio
        """
        if prompt_len is None:
            prompt_len = 100000  # no prompt length limiting
        for k, v in batch.items():
            if isinstance(v, torch.Tensor):
                batch[k] = v.to(self.device)
        with torch.no_grad():
            if self.use_speechtokenizer:
                vq_id = self.codec_encoder.encode(
                    batch["speech"].unsqueeze(1)
                )  # [B,1,T] -> (n_q, B, T)
            else:
                vq_id = self.codec_encoder.encode(batch["speech"].unsqueeze(1))
                vq_id = torch.cat([encoded[0] for encoded in vq_id], dim=-1).transpose(
                    0, 1
                )

            # typically we only require one config in the chunk,
            # but we can also use multiple configs to, for example, use different sampling temperature at different positions
            for chunk in chunk_configs:
                ar_vq_ids = self.ar_model.sample_hf(
                    batch["phone_ids"],
                    vq_id[0, :, :prompt_len],
                    top_p=chunk["top_p"],
                    top_k=chunk["top_k"],
                    temperature=chunk["temperature"],
                    num_beams=chunk["num_beams"],
                    repeat_penalty=chunk["repeat_penalty"],
                    max_length=chunk["max_length"],
                )
                # recovered_audio_ar = self.decode(ar_vq_ids.unsqueeze(0))
                # torchaudio.save('recovered_audio_ar.wav', recovered_audio_ar[0].cpu(), 24000)

                nar_vq_ids = self.nar_model.sample_hf(
                    phone_ids=batch["phone_ids"],
                    prompt_ids=vq_id[:, :, :prompt_len],
                    first_stage_ids=ar_vq_ids,
                    # first_stage_ids=vq_id[0, :, prompt_len:],
                )

                if return_prompt:
                    nar_vq_ids = torch.cat(
                        [vq_id[..., :prompt_len], nar_vq_ids], dim=-1
                    )

                recovered_audio = self.decode(nar_vq_ids)
                return recovered_audio  # [B, 1, T]