Spaces:
Running
on
Zero
Running
on
Zero
File size: 10,365 Bytes
c968fc3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 |
# Copyright (c) 2023 Amphion.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from .modeling_llama import LlamaConfig, LlamaForCausalLM, LlamaModel
import torch
import torch.nn.functional as F
import numpy as np
import os
import torch.nn as nn
class ValleAR(nn.Module):
def __init__(
self,
phone_vocab_size=256,
target_vocab_size=1024,
hidden_size=1024,
intermediate_size=4096,
num_hidden_layers=12,
num_attention_heads=16,
pad_token_id=1281,
bos_target_id=1282,
eos_target_id=1283,
bos_phone_id=1284,
eos_phone_id=1285,
use_input_embeds=False,
emb_dim=256,
**kwargs,
):
super(ValleAR, self).__init__()
self.config = LlamaConfig(
vocab_size=phone_vocab_size + target_vocab_size + 10,
hidden_size=hidden_size,
intermediate_size=intermediate_size,
num_hidden_layers=num_hidden_layers,
num_attention_heads=num_attention_heads,
pad_token_id=pad_token_id,
bos_token_id=bos_target_id,
eos_token_id=eos_target_id,
)
self.phone_vocab_size = phone_vocab_size
self.target_vocab_size = target_vocab_size
self.pad_token_id = pad_token_id
self.bos_target_id = bos_target_id
self.eos_target_id = eos_target_id
self.bos_phone_id = bos_phone_id
self.eos_phone_id = eos_phone_id
self.model = LlamaForCausalLM(self.config)
self.use_input_embeds = use_input_embeds
# no input embedding is used to provide speaker information
if self.use_input_embeds:
self.emb_linear = nn.Linear(emb_dim, hidden_size)
self.emb_linear.weight.data.normal_(mean=0.0, std=0.01)
self.emb_linear.bias.data.zero_()
def forward(
self, phone_ids, phone_mask, target_ids, target_mask, input_embeds=None
):
if input_embeds is not None:
input_embeds = self.emb_linear(input_embeds)
phone_ids, phone_mask, phone_label = self.add_phone_eos_bos_label(
phone_ids,
phone_mask,
self.eos_phone_id,
self.bos_phone_id,
self.pad_token_id,
)
target_ids, target_mask, target_label = self.add_target_eos_bos_label(
target_ids,
target_mask,
self.eos_target_id,
self.bos_target_id,
self.pad_token_id,
)
input_token_ids = torch.cat([phone_ids, target_ids], dim=-1)
attention_mask = torch.cat([phone_mask, target_mask], dim=-1)
# breakpoint()
if input_embeds is not None:
raise NotImplementedError
attention_mask = torch.cat(
[
torch.ones(
(input_embeds.shape[0], input_embeds.shape[1]),
dtype=attention_mask.dtype,
device=attention_mask.device,
),
attention_mask,
],
dim=-1,
)
labels = torch.cat([phone_label, target_label], dim=-1)
if input_embeds is not None:
raise NotImplementedError
labels = torch.cat(
[
-100
* torch.ones(
(input_embeds.shape[0], input_embeds.shape[1]),
dtype=labels.dtype,
device=labels.device,
),
labels,
],
dim=-1,
)
if input_embeds is not None:
raise NotImplementedError
inputs_embeds = torch.cat(
[input_embeds, self.model.model.embed_tokens(input_token_ids)], dim=1
)
out = self.model(
inputs_embeds=inputs_embeds,
attention_mask=attention_mask,
labels=labels,
return_dict=True,
)
return out
out = self.model(
input_token_ids,
attention_mask=attention_mask,
labels=labels,
return_dict=True,
)
# calcualte top1, top5, top10 accuracy
logits = out.logits
logits = logits[:, -target_ids.shape[1] :]
top1_acc = logits.argmax(-1)[..., :-1] == target_ids[:, 1:]
top1_acc = (top1_acc * target_mask[..., :-1]).sum() / target_mask.sum()
top5_acc = torch.topk(logits[..., :-1, :], 5, dim=-1)[1]
top5_acc = top5_acc == target_ids[:, 1:].unsqueeze(-1)
top5_acc = (
top5_acc * target_mask[..., :-1].unsqueeze(-1)
).sum() / target_mask.sum()
top10_acc = torch.topk(logits[..., :-1, :], 10, dim=-1)[1]
top10_acc = top10_acc == target_ids[:, 1:].unsqueeze(-1)
top10_acc = (
top10_acc * target_mask[..., :-1].unsqueeze(-1)
).sum() / target_mask.sum()
out.top1_acc = top1_acc
out.top5_acc = top5_acc
out.top10_acc = top10_acc
return out
def add_phone_eos_bos_label(
self, phone_ids, phone_mask, phone_eos_id, phone_bos_id, pad_token_id
):
# phone_ids: [B, T]
# phone_mask: [B, T]
phone_ids = phone_ids + self.target_vocab_size * phone_mask
phone_ids = phone_ids * phone_mask
phone_ids = F.pad(phone_ids, (0, 1), value=0) + phone_eos_id * F.pad(
1 - phone_mask, (0, 1), value=1
) # make pad token eos token, add eos token at the end
phone_mask = F.pad(phone_mask, (1, 0), value=1) # add eos mask
phone_ids = phone_ids * phone_mask + pad_token_id * (
1 - phone_mask
) # restore pad token ids
phone_ids = F.pad(phone_ids, (1, 0), value=phone_bos_id) # add bos token
phone_mask = F.pad(phone_mask, (1, 0), value=1) # add bos mask
phone_label = -100 * torch.ones_like(
phone_ids
) # loss for entire phone is not computed (passed to llama)
return phone_ids, phone_mask, phone_label
def add_target_eos_bos_label(
self, target_ids, target_mask, target_eos_id, target_bos_id, pad_token_id
):
# target_ids: [B, T]
# target_mask: [B, T]
target_ids = target_ids * target_mask
target_ids = F.pad(target_ids, (0, 1), value=0) + target_eos_id * F.pad(
1 - target_mask, (0, 1), value=1
)
target_mask = F.pad(target_mask, (1, 0), value=1)
target_ids = target_ids * target_mask + pad_token_id * (1 - target_mask)
target_ids = F.pad(target_ids, (1, 0), value=target_bos_id)
target_mask = F.pad(target_mask, (1, 0), value=1)
target_label = target_ids * target_mask + (-100) * (
1 - target_mask
) # loss for target is computed on unmasked tokens
return target_ids, target_mask, target_label
def sample_hf(
self,
phone_ids, # the phones of prompt and target should be concatenated together
prompt_ids,
inputs_embeds=None,
max_length=2000,
temperature=1.0,
top_k=100,
top_p=0.9,
repeat_penalty=1.0,
num_beams=1,
):
if inputs_embeds is not None:
inputs_embeds = self.emb_linear(inputs_embeds)
phone_mask = torch.ones_like(phone_ids)
prompt_mask = torch.ones_like(prompt_ids)
phone_ids, _, _ = self.add_phone_eos_bos_label(
phone_ids,
phone_mask,
self.eos_phone_id,
self.bos_phone_id,
self.pad_token_id,
)
prompt_ids, _, _ = self.add_target_eos_bos_label(
prompt_ids,
prompt_mask,
self.eos_target_id,
self.bos_target_id,
self.pad_token_id,
)
prompt_ids = prompt_ids[:, :-1] # remove end token. Make it continue mode
input_token_ids = torch.cat([phone_ids, prompt_ids], dim=-1)
if inputs_embeds is not None:
raise NotImplementedError
inputs_embeds = torch.cat(
[inputs_embeds, self.model.model.embed_tokens(input_token_ids)], dim=1
)
generated_ids = self.model.generate(
inputs_embeds=inputs_embeds,
do_sample=True,
max_length=max_length,
pad_token_id=self.pad_token_id,
eos_token_id=self.eos_target_id,
temperature=temperature,
top_k=top_k,
top_p=top_p,
repetition_penalty=repeat_penalty,
)
gen_tokens = generated_ids[:, :-1]
return gen_tokens
input_length = input_token_ids.shape[1]
generated_ids = self.model.generate(
input_token_ids,
do_sample=True,
max_length=max_length,
pad_token_id=self.pad_token_id,
eos_token_id=self.eos_target_id,
temperature=temperature,
top_k=top_k,
top_p=top_p,
repetition_penalty=repeat_penalty,
num_beams=num_beams,
)
gen_tokens = generated_ids[:, input_length:-1]
return gen_tokens
def test():
model = ValleAR()
phone_ids = torch.LongTensor([[1, 2, 3, 4, 5, 0], [1, 2, 3, 4, 5, 6]])
phone_mask = torch.LongTensor([[1, 1, 1, 0, 0, 0], [1, 1, 1, 0, 0, 0]])
target_ids = torch.LongTensor([765, 234, 123, 234, 123, 599]).expand(2, -1)
target_mask = torch.LongTensor([1, 1, 1, 1, 0, 0]).expand(2, -1)
optimizer = torch.optim.Adam(model.parameters(), lr=3e-4)
for i in range(15):
optimizer.zero_grad()
out = model(
phone_ids=phone_ids,
phone_mask=phone_mask,
target_ids=target_ids,
target_mask=target_mask,
)
loss = out.loss
loss.backward()
optimizer.step()
print(f"iter={i}, {loss}.")
phone_ids = torch.LongTensor([1, 2, 3]).reshape(1, -1)
target_ids = torch.LongTensor([765, 234]).reshape(1, -1)
sampled = model.sample_hf(phone_ids, target_ids)
breakpoint()
if __name__ == "__main__":
test()
|