File size: 10,365 Bytes
c968fc3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
# Copyright (c) 2023 Amphion.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

from .modeling_llama import LlamaConfig, LlamaForCausalLM, LlamaModel
import torch
import torch.nn.functional as F
import numpy as np
import os
import torch.nn as nn


class ValleAR(nn.Module):
    def __init__(
        self,
        phone_vocab_size=256,
        target_vocab_size=1024,
        hidden_size=1024,
        intermediate_size=4096,
        num_hidden_layers=12,
        num_attention_heads=16,
        pad_token_id=1281,
        bos_target_id=1282,
        eos_target_id=1283,
        bos_phone_id=1284,
        eos_phone_id=1285,
        use_input_embeds=False,
        emb_dim=256,
        **kwargs,
    ):
        super(ValleAR, self).__init__()
        self.config = LlamaConfig(
            vocab_size=phone_vocab_size + target_vocab_size + 10,
            hidden_size=hidden_size,
            intermediate_size=intermediate_size,
            num_hidden_layers=num_hidden_layers,
            num_attention_heads=num_attention_heads,
            pad_token_id=pad_token_id,
            bos_token_id=bos_target_id,
            eos_token_id=eos_target_id,
        )
        self.phone_vocab_size = phone_vocab_size
        self.target_vocab_size = target_vocab_size
        self.pad_token_id = pad_token_id
        self.bos_target_id = bos_target_id
        self.eos_target_id = eos_target_id
        self.bos_phone_id = bos_phone_id
        self.eos_phone_id = eos_phone_id
        self.model = LlamaForCausalLM(self.config)

        self.use_input_embeds = use_input_embeds

        # no input embedding is used to provide speaker information
        if self.use_input_embeds:
            self.emb_linear = nn.Linear(emb_dim, hidden_size)
            self.emb_linear.weight.data.normal_(mean=0.0, std=0.01)
            self.emb_linear.bias.data.zero_()

    def forward(
        self, phone_ids, phone_mask, target_ids, target_mask, input_embeds=None
    ):
        if input_embeds is not None:
            input_embeds = self.emb_linear(input_embeds)
        phone_ids, phone_mask, phone_label = self.add_phone_eos_bos_label(
            phone_ids,
            phone_mask,
            self.eos_phone_id,
            self.bos_phone_id,
            self.pad_token_id,
        )
        target_ids, target_mask, target_label = self.add_target_eos_bos_label(
            target_ids,
            target_mask,
            self.eos_target_id,
            self.bos_target_id,
            self.pad_token_id,
        )
        input_token_ids = torch.cat([phone_ids, target_ids], dim=-1)
        attention_mask = torch.cat([phone_mask, target_mask], dim=-1)
        # breakpoint()
        if input_embeds is not None:
            raise NotImplementedError
            attention_mask = torch.cat(
                [
                    torch.ones(
                        (input_embeds.shape[0], input_embeds.shape[1]),
                        dtype=attention_mask.dtype,
                        device=attention_mask.device,
                    ),
                    attention_mask,
                ],
                dim=-1,
            )
        labels = torch.cat([phone_label, target_label], dim=-1)
        if input_embeds is not None:
            raise NotImplementedError
            labels = torch.cat(
                [
                    -100
                    * torch.ones(
                        (input_embeds.shape[0], input_embeds.shape[1]),
                        dtype=labels.dtype,
                        device=labels.device,
                    ),
                    labels,
                ],
                dim=-1,
            )

        if input_embeds is not None:
            raise NotImplementedError
            inputs_embeds = torch.cat(
                [input_embeds, self.model.model.embed_tokens(input_token_ids)], dim=1
            )
            out = self.model(
                inputs_embeds=inputs_embeds,
                attention_mask=attention_mask,
                labels=labels,
                return_dict=True,
            )
            return out

        out = self.model(
            input_token_ids,
            attention_mask=attention_mask,
            labels=labels,
            return_dict=True,
        )

        # calcualte top1, top5, top10 accuracy
        logits = out.logits
        logits = logits[:, -target_ids.shape[1] :]
        top1_acc = logits.argmax(-1)[..., :-1] == target_ids[:, 1:]
        top1_acc = (top1_acc * target_mask[..., :-1]).sum() / target_mask.sum()

        top5_acc = torch.topk(logits[..., :-1, :], 5, dim=-1)[1]
        top5_acc = top5_acc == target_ids[:, 1:].unsqueeze(-1)
        top5_acc = (
            top5_acc * target_mask[..., :-1].unsqueeze(-1)
        ).sum() / target_mask.sum()

        top10_acc = torch.topk(logits[..., :-1, :], 10, dim=-1)[1]
        top10_acc = top10_acc == target_ids[:, 1:].unsqueeze(-1)
        top10_acc = (
            top10_acc * target_mask[..., :-1].unsqueeze(-1)
        ).sum() / target_mask.sum()

        out.top1_acc = top1_acc
        out.top5_acc = top5_acc
        out.top10_acc = top10_acc

        return out

    def add_phone_eos_bos_label(
        self, phone_ids, phone_mask, phone_eos_id, phone_bos_id, pad_token_id
    ):
        # phone_ids: [B, T]
        # phone_mask: [B, T]

        phone_ids = phone_ids + self.target_vocab_size * phone_mask

        phone_ids = phone_ids * phone_mask
        phone_ids = F.pad(phone_ids, (0, 1), value=0) + phone_eos_id * F.pad(
            1 - phone_mask, (0, 1), value=1
        )  # make pad token eos token, add eos token at the end
        phone_mask = F.pad(phone_mask, (1, 0), value=1)  # add eos mask
        phone_ids = phone_ids * phone_mask + pad_token_id * (
            1 - phone_mask
        )  # restore pad token ids
        phone_ids = F.pad(phone_ids, (1, 0), value=phone_bos_id)  # add bos token
        phone_mask = F.pad(phone_mask, (1, 0), value=1)  # add bos mask
        phone_label = -100 * torch.ones_like(
            phone_ids
        )  # loss for entire phone is not computed (passed to llama)
        return phone_ids, phone_mask, phone_label

    def add_target_eos_bos_label(
        self, target_ids, target_mask, target_eos_id, target_bos_id, pad_token_id
    ):
        # target_ids: [B, T]
        # target_mask: [B, T]
        target_ids = target_ids * target_mask
        target_ids = F.pad(target_ids, (0, 1), value=0) + target_eos_id * F.pad(
            1 - target_mask, (0, 1), value=1
        )
        target_mask = F.pad(target_mask, (1, 0), value=1)
        target_ids = target_ids * target_mask + pad_token_id * (1 - target_mask)
        target_ids = F.pad(target_ids, (1, 0), value=target_bos_id)
        target_mask = F.pad(target_mask, (1, 0), value=1)
        target_label = target_ids * target_mask + (-100) * (
            1 - target_mask
        )  # loss for target is computed on unmasked tokens
        return target_ids, target_mask, target_label

    def sample_hf(
        self,
        phone_ids,  # the phones of prompt and target should be concatenated together
        prompt_ids,
        inputs_embeds=None,
        max_length=2000,
        temperature=1.0,
        top_k=100,
        top_p=0.9,
        repeat_penalty=1.0,
        num_beams=1,
    ):
        if inputs_embeds is not None:
            inputs_embeds = self.emb_linear(inputs_embeds)
        phone_mask = torch.ones_like(phone_ids)
        prompt_mask = torch.ones_like(prompt_ids)
        phone_ids, _, _ = self.add_phone_eos_bos_label(
            phone_ids,
            phone_mask,
            self.eos_phone_id,
            self.bos_phone_id,
            self.pad_token_id,
        )
        prompt_ids, _, _ = self.add_target_eos_bos_label(
            prompt_ids,
            prompt_mask,
            self.eos_target_id,
            self.bos_target_id,
            self.pad_token_id,
        )
        prompt_ids = prompt_ids[:, :-1]  # remove end token. Make it continue mode

        input_token_ids = torch.cat([phone_ids, prompt_ids], dim=-1)

        if inputs_embeds is not None:
            raise NotImplementedError
            inputs_embeds = torch.cat(
                [inputs_embeds, self.model.model.embed_tokens(input_token_ids)], dim=1
            )
            generated_ids = self.model.generate(
                inputs_embeds=inputs_embeds,
                do_sample=True,
                max_length=max_length,
                pad_token_id=self.pad_token_id,
                eos_token_id=self.eos_target_id,
                temperature=temperature,
                top_k=top_k,
                top_p=top_p,
                repetition_penalty=repeat_penalty,
            )
            gen_tokens = generated_ids[:, :-1]
            return gen_tokens

        input_length = input_token_ids.shape[1]
        generated_ids = self.model.generate(
            input_token_ids,
            do_sample=True,
            max_length=max_length,
            pad_token_id=self.pad_token_id,
            eos_token_id=self.eos_target_id,
            temperature=temperature,
            top_k=top_k,
            top_p=top_p,
            repetition_penalty=repeat_penalty,
            num_beams=num_beams,
        )

        gen_tokens = generated_ids[:, input_length:-1]

        return gen_tokens


def test():
    model = ValleAR()

    phone_ids = torch.LongTensor([[1, 2, 3, 4, 5, 0], [1, 2, 3, 4, 5, 6]])
    phone_mask = torch.LongTensor([[1, 1, 1, 0, 0, 0], [1, 1, 1, 0, 0, 0]])
    target_ids = torch.LongTensor([765, 234, 123, 234, 123, 599]).expand(2, -1)
    target_mask = torch.LongTensor([1, 1, 1, 1, 0, 0]).expand(2, -1)

    optimizer = torch.optim.Adam(model.parameters(), lr=3e-4)

    for i in range(15):
        optimizer.zero_grad()
        out = model(
            phone_ids=phone_ids,
            phone_mask=phone_mask,
            target_ids=target_ids,
            target_mask=target_mask,
        )
        loss = out.loss

        loss.backward()

        optimizer.step()

        print(f"iter={i}, {loss}.")

    phone_ids = torch.LongTensor([1, 2, 3]).reshape(1, -1)
    target_ids = torch.LongTensor([765, 234]).reshape(1, -1)
    sampled = model.sample_hf(phone_ids, target_ids)

    breakpoint()


if __name__ == "__main__":
    test()