Svngoku's picture
Update app.py
f5d93aa verified
import ast
import pandas as pd
import gradio as gr
import litellm
import plotly.express as px
from collections import defaultdict
from datetime import datetime
import os
from datasets import load_dataset
import sqlite3
def initialize_database():
conn = sqlite3.connect('afrimmlu_results.db')
cursor = conn.cursor()
cursor.execute('''
CREATE TABLE IF NOT EXISTS summary_results (
id INTEGER PRIMARY KEY AUTOINCREMENT,
language TEXT,
subject TEXT,
accuracy REAL,
timestamp TEXT
)
''')
cursor.execute('''
CREATE TABLE IF NOT EXISTS detailed_results (
id INTEGER PRIMARY KEY AUTOINCREMENT,
language TEXT,
timestamp TEXT,
subject TEXT,
question TEXT,
model_answer TEXT,
correct_answer TEXT,
is_correct INTEGER,
total_tokens INTEGER
)
''')
conn.commit()
conn.close()
def save_results_to_database(language, summary_results, detailed_results):
conn = sqlite3.connect('afrimmlu_results.db')
cursor = conn.cursor()
timestamp = datetime.now().isoformat()
# Save summary results
for subject, accuracy in summary_results.items():
cursor.execute('''
INSERT INTO summary_results (language, subject, accuracy, timestamp)
VALUES (?, ?, ?, ?)
''', (language, subject, accuracy, timestamp))
# Save detailed results
for result in detailed_results:
cursor.execute('''
INSERT INTO detailed_results (
language, timestamp, subject, question, model_answer,
correct_answer, is_correct, total_tokens
) VALUES (?, ?, ?, ?, ?, ?, ?, ?)
''', (
language,
result['timestamp'],
result['subject'],
result['question'],
result['model_answer'],
result['correct_answer'],
int(result['is_correct']),
result['total_tokens']
))
conn.commit()
conn.close()
def load_afrimmlu_data(language_code="swa"):
"""
Load AfriMMLU dataset for a specific language.
"""
try:
dataset = load_dataset(
'masakhane/afrimmlu',
language_code,
token=os.environ['HF_TOKEN'],
)
test_data = dataset['test'].to_list()
return test_data
except Exception as e:
print(f"Error loading dataset: {str(e)}")
return None
def preprocess_dataset(test_data):
"""
Preprocess the dataset to convert the 'choices' field from a string to a list of strings.
"""
preprocessed_data = []
for example in test_data:
if isinstance(example['choices'], str):
choices_str = example['choices']
if choices_str.startswith("'") and choices_str.endswith("'"):
choices_str = choices_str[1:-1]
elif choices_str.startswith('"') and choices_str.endswith('"'):
choices_str = choices_str[1:-1]
choices_str = choices_str.replace("\\'", "'")
try:
example['choices'] = ast.literal_eval(choices_str)
except (ValueError, SyntaxError):
print(f"Error parsing choices: {choices_str}")
continue
preprocessed_data.append(example)
return preprocessed_data
def evaluate_afrimmlu(test_data, model_name="deepseek/deepseek-chat", language="swa"):
"""
Evaluate the model on the AfriMMLU dataset.
"""
results = []
correct = 0
total = 0
subject_results = defaultdict(lambda: {"correct": 0, "total": 0})
for example in test_data:
question = example['question']
choices = example['choices']
answer = example['answer']
subject = example['subject']
prompt = (
f"Answer the following multiple-choice question. "
f"Return only the letter corresponding to the correct answer (A, B, C, or D).\n"
f"Question: {question}\n"
f"Options:\n"
f"A. {choices[0]}\n"
f"B. {choices[1]}\n"
f"C. {choices[2]}\n"
f"D. {choices[3]}\n"
f"Answer:"
)
try:
response = litellm.completion(
model=model_name,
messages=[{"role": "user", "content": prompt}]
)
model_output = response.choices[0].message.content.strip().upper()
model_answer = None
for char in model_output:
if char in ['A', 'B', 'C', 'D']:
model_answer = char
break
is_correct = model_answer == answer.upper()
if is_correct:
correct += 1
subject_results[subject]["correct"] += 1
total += 1
subject_results[subject]["total"] += 1
results.append({
'timestamp': datetime.now().isoformat(),
'subject': subject,
'question': question,
'model_answer': model_answer,
'correct_answer': answer.upper(),
'is_correct': is_correct,
'total_tokens': response.usage.total_tokens
})
except Exception as e:
print(f"Error processing question: {str(e)}")
continue
accuracy = (correct / total * 100) if total > 0 else 0
subject_accuracy = {
subject: (stats["correct"] / stats["total"] * 100) if stats["total"] > 0 else 0
for subject, stats in subject_results.items()
}
# Save results to database
save_results_to_database(language, {**subject_accuracy, 'Overall': accuracy}, results)
return {
"accuracy": accuracy,
"subject_accuracy": subject_accuracy,
"detailed_results": results
}
def create_visualization(results_dict):
"""
Create visualization from evaluation results.
"""
summary_data = [
{'Subject': subject, 'Accuracy (%)': accuracy}
for subject, accuracy in results_dict['subject_accuracy'].items()
]
summary_data.append({'Subject': 'Overall', 'Accuracy (%)': results_dict['accuracy']})
summary_df = pd.DataFrame(summary_data)
fig = px.bar(
summary_df,
x='Subject',
y='Accuracy (%)',
title='AfriMMLU Evaluation Results',
labels={'Subject': 'Subject', 'Accuracy (%)': 'Accuracy (%)'}
)
fig.update_layout(
xaxis_tickangle=-45,
showlegend=False,
height=600
)
return summary_df, fig
def query_database(query):
conn = sqlite3.connect('afrimmlu_results.db')
try:
df = pd.read_sql_query(query, conn)
return df
except Exception as e:
return pd.DataFrame({'Error': [str(e)]})
finally:
conn.close()
def create_gradio_interface():
language_options = {
"swa": "Swahili",
"yor": "Yoruba",
"wol": "Wolof",
"lin": "Lingala",
"ewe": "Ewe",
"ibo": "Igbo"
}
initialize_database()
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("# AfriMMLU Evaluation Dashboard")
with gr.Tabs():
# Evaluation Tab
with gr.Tab("Model Evaluation"):
with gr.Row():
with gr.Column(scale=1):
language_input = gr.Dropdown(
choices=list(language_options.keys()),
label="Select Language",
value="swa"
)
model_input = gr.Dropdown(
choices=["deepseek/deepseek-chat"],
label="Select Model",
value="deepseek/deepseek-chat"
)
evaluate_btn = gr.Button("Evaluate", variant="primary")
with gr.Row():
summary_table = gr.Dataframe(
headers=["Subject", "Accuracy (%)"],
label="Summary Results"
)
with gr.Row():
summary_plot = gr.Plot(label="Performance by Subject")
with gr.Row():
detailed_results = gr.Dataframe(
label="Detailed Results",
wrap=True
)
# Query Tab
with gr.Tab("Database Analysis"):
with gr.Row():
with gr.Column():
example_queries = gr.Dropdown(
choices=[
"SELECT language, AVG(accuracy) as avg_accuracy FROM summary_results WHERE subject='Overall' GROUP BY language",
"SELECT subject, AVG(accuracy) as avg_accuracy FROM summary_results GROUP BY subject",
"SELECT language, subject, accuracy, timestamp FROM summary_results ORDER BY timestamp DESC LIMIT 10",
"SELECT language, COUNT(*) as total_questions, SUM(is_correct) as correct_answers FROM detailed_results GROUP BY language",
"SELECT subject, COUNT(*) as total_evaluations FROM summary_results GROUP BY subject"
],
label="Example Queries",
value="SELECT language, AVG(accuracy) as avg_accuracy FROM summary_results WHERE subject='Overall' GROUP BY language"
)
query_input = gr.Textbox(
label="SQL Query",
placeholder="Enter your SQL query here",
lines=3
)
query_button = gr.Button("Run Query", variant="primary")
gr.Markdown("""
### Available Tables:
1. summary_results (id, language, subject, accuracy, timestamp)
2. detailed_results (id, language, timestamp, subject, question, model_answer, correct_answer, is_correct, total_tokens)
""")
with gr.Row():
query_output = gr.Dataframe(
label="Query Results",
wrap=True
)
def evaluate_language(language_code, model_name):
test_data = load_afrimmlu_data(language_code)
if test_data is None:
return None, None, None
preprocessed_data = preprocess_dataset(test_data)
results = evaluate_afrimmlu(preprocessed_data, model_name, language_code)
summary_df, plot = create_visualization(results)
detailed_df = pd.DataFrame(results["detailed_results"])
return summary_df, plot, detailed_df
# Evaluation tab callback
evaluate_btn.click(
fn=evaluate_language,
inputs=[language_input, model_input],
outputs=[summary_table, summary_plot, detailed_results]
)
# Query tab callbacks
example_queries.change(
fn=lambda x: x,
inputs=[example_queries],
outputs=[query_input]
)
query_button.click(
fn=query_database,
inputs=[query_input],
outputs=[query_output]
)
return demo
if __name__ == "__main__":
os.environ['DEEPSEEK_API_KEY']
os.environ['HF_TOKEN']
demo = create_gradio_interface()
demo.launch(share=True)