Reverse Changes
Browse files- app.py +369 -357
- utils/ai_generator_diffusers_flux.py +4 -4
- utils/constants.py +1 -0
- utils/version_info.py +1 -1
- web-ui.bat +4 -1
app.py
CHANGED
@@ -1,5 +1,7 @@
|
|
1 |
import os
|
2 |
# Import constants
|
|
|
|
|
3 |
import utils.constants as constants
|
4 |
import gradio as gr
|
5 |
from PIL import Image
|
@@ -10,6 +12,9 @@ from tempfile import NamedTemporaryFile
|
|
10 |
import atexit
|
11 |
import random
|
12 |
import logging
|
|
|
|
|
|
|
13 |
|
14 |
IS_SHARED_SPACE = constants.IS_SHARED_SPACE
|
15 |
|
@@ -57,13 +62,25 @@ from utils.excluded_colors import (
|
|
57 |
# )
|
58 |
from utils.version_info import (
|
59 |
versions_html,
|
60 |
-
initialize_cuda,
|
61 |
-
release_torch_resources,
|
62 |
get_torch_info
|
63 |
)
|
64 |
from utils.lora_details import (
|
65 |
-
upd_prompt_notes
|
|
|
|
|
|
|
66 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
|
68 |
input_image_palette = []
|
69 |
current_prerendered_image = gr.State("./images/images/Beeuty-1.png")
|
@@ -162,324 +179,313 @@ def get_model_and_lora(model_textbox):
|
|
162 |
default_model = model_textbox
|
163 |
return default_model, []
|
164 |
|
165 |
-
|
166 |
-
def
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
f"Available options: {list(PIPELINE_CLASSES.keys())}")
|
205 |
-
|
206 |
-
#initialize_cuda()
|
207 |
-
device = "cuda" if cuda.is_available() else "cpu"
|
208 |
-
from src.condition import Condition
|
209 |
-
|
210 |
-
print(f"device:{device}\nmodel_name:{model_name}\nlora_weights:{lora_weights}\n")
|
211 |
-
print(f"\n {get_torch_info()}\n")
|
212 |
-
# Disable gradient calculations
|
213 |
-
with no_grad():
|
214 |
-
# Initialize the pipeline inside the context manager
|
215 |
-
pipe = pipeline_class.from_pretrained(
|
216 |
-
model_name,
|
217 |
-
torch_dtype=bfloat16 if device == "cuda" else float32
|
218 |
-
).to(device)
|
219 |
-
# Optionally, don't use CPU offload if not necessary
|
220 |
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
else:
|
313 |
-
print(f"Method {method_name} not found in pipe.")
|
314 |
-
if 'condition_type' in config:
|
315 |
-
condition_type = config['condition_type']
|
316 |
-
if condition_type == "coloring":
|
317 |
-
#pipe.enable_coloring()
|
318 |
-
print("\nEnabled coloring.\n")
|
319 |
-
elif condition_type == "deblurring":
|
320 |
-
#pipe.enable_deblurring()
|
321 |
-
print("\nEnabled deblurring.\n")
|
322 |
-
elif condition_type == "fill":
|
323 |
-
#pipe.enable_fill()
|
324 |
-
print("\nEnabled fill.\n")
|
325 |
-
elif condition_type == "depth":
|
326 |
-
#pipe.enable_depth()
|
327 |
-
print("\nEnabled depth.\n")
|
328 |
-
elif condition_type == "canny":
|
329 |
-
#pipe.enable_canny()
|
330 |
-
print("\nEnabled canny.\n")
|
331 |
-
elif condition_type == "subject":
|
332 |
-
#pipe.enable_subject()
|
333 |
-
print("\nEnabled subject.\n")
|
334 |
else:
|
335 |
-
print(f"
|
336 |
-
|
337 |
-
|
338 |
-
|
339 |
-
|
340 |
-
|
341 |
-
|
342 |
-
|
343 |
-
|
344 |
-
|
345 |
-
|
346 |
-
|
347 |
-
|
348 |
-
|
349 |
-
|
350 |
-
|
351 |
-
|
352 |
-
|
353 |
-
|
354 |
-
|
355 |
-
|
356 |
-
|
357 |
-
|
358 |
-
|
359 |
-
|
360 |
-
|
361 |
-
|
362 |
-
|
363 |
-
|
364 |
-
|
365 |
-
|
366 |
-
|
367 |
-
|
368 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
369 |
}
|
370 |
-
|
371 |
-
|
372 |
-
|
373 |
-
|
374 |
-
|
375 |
-
|
376 |
-
|
377 |
-
|
378 |
-
|
379 |
-
|
380 |
-
|
381 |
-
|
382 |
-
|
383 |
-
|
384 |
-
|
385 |
-
|
386 |
-
|
387 |
-
|
388 |
-
|
389 |
-
#
|
390 |
-
del
|
391 |
-
|
392 |
-
|
393 |
-
|
|
|
|
|
|
|
|
|
394 |
|
395 |
-
|
396 |
-
|
397 |
-
|
398 |
-
|
399 |
-
|
400 |
-
|
401 |
-
|
402 |
-
|
403 |
-
|
404 |
-
|
405 |
-
|
406 |
-
|
407 |
-
|
408 |
-
|
409 |
-
|
410 |
-
|
411 |
-
|
412 |
-
|
413 |
-
)
|
414 |
-
|
415 |
-
|
416 |
-
|
417 |
-
|
418 |
-
|
419 |
-
|
420 |
-
|
421 |
-
|
422 |
-
|
423 |
-
|
424 |
-
|
425 |
-
|
426 |
-
|
427 |
-
|
428 |
-
|
429 |
-
|
430 |
-
|
431 |
-
|
432 |
-
|
433 |
-
|
434 |
-
|
435 |
-
|
436 |
-
|
437 |
-
|
438 |
-
|
439 |
-
|
440 |
-
|
441 |
-
|
442 |
-
|
443 |
-
|
444 |
-
|
445 |
-
|
446 |
-
|
447 |
-
|
448 |
-
|
449 |
-
|
450 |
-
|
451 |
-
|
452 |
-
|
453 |
-
|
454 |
-
|
455 |
-
|
456 |
-
|
457 |
-
|
458 |
-
|
459 |
-
|
460 |
-
|
461 |
-
|
462 |
-
|
463 |
-
|
464 |
-
|
465 |
-
|
466 |
-
|
467 |
-
|
468 |
-
|
469 |
-
|
470 |
-
|
471 |
-
|
472 |
-
|
473 |
-
|
474 |
-
|
475 |
-
release_torch_resources()
|
476 |
-
gc.collect()
|
477 |
-
return tmp.name
|
478 |
-
except Exception as e:
|
479 |
-
print(f"Error generating AI image: {e}")
|
480 |
-
release_torch_resources()
|
481 |
gc.collect()
|
482 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
483 |
# Get the model and LoRA weights
|
484 |
model, lora_weights = get_model_and_lora(model_textbox_value)
|
485 |
global current_prerendered_image
|
@@ -565,7 +571,12 @@ def add_border(image, mask_width, mask_height, blank_color):
|
|
565 |
margin_color = detect_color_format(blank_color)
|
566 |
print(f"Adding border to image with width: {mask_width}, height: {mask_height}, color: {margin_color}")
|
567 |
return shrink_and_paste_on_blank(bordered_image_output, mask_width, mask_height, margin_color)
|
568 |
-
|
|
|
|
|
|
|
|
|
|
|
569 |
title = "HexaGrid Creator"
|
570 |
#description = "Customizable Hexagon Grid Image Generator"
|
571 |
examples = [["assets//examples//hex_map_p1.png", 32, 1, 0, 0, 0, 0, 0, "#ede9ac44","#12165380", True]]
|
@@ -791,7 +802,7 @@ def main(debug):
|
|
791 |
# Gallery from PRE_RENDERED_IMAGES GOES HERE
|
792 |
prerendered_image_gallery = gr.Gallery(label="Image Gallery", show_label=True, value=build_prerendered_images(constants.pre_rendered_maps_paths), elem_id="gallery", elem_classes="solid", type="filepath", columns=[3], rows=[3], preview=False ,object_fit="contain", height="auto", format="png",allow_preview=False)
|
793 |
with gr.Row():
|
794 |
-
image_guidance_stength = gr.Slider(label="Image Guidance Strength", minimum=0, maximum=1.0, value=0.
|
795 |
with gr.Column():
|
796 |
replace_input_image_button = gr.Button(
|
797 |
"Replace Input Image",
|
@@ -888,35 +899,35 @@ def main(debug):
|
|
888 |
],
|
889 |
inputs=[input_image, filter_color, fill_hex, start_x, start_y, end_x, end_y, x_spacing, y_spacing, hex_size, rotation, border_size, border_color, border_opacity],
|
890 |
elem_id="examples")
|
891 |
-
#with gr.Row():
|
892 |
-
#gr.HTML(value=versions_html(), visible=True, elem_id="versions")
|
893 |
with gr.Row():
|
894 |
-
|
895 |
-
|
896 |
-
|
897 |
-
|
898 |
-
|
899 |
-
|
900 |
-
|
901 |
-
|
902 |
-
|
903 |
-
|
904 |
-
|
905 |
-
|
906 |
-
|
907 |
-
|
908 |
-
|
909 |
-
|
910 |
-
|
911 |
-
|
912 |
-
|
913 |
-
|
914 |
-
|
915 |
-
|
916 |
-
|
917 |
-
|
918 |
-
|
919 |
-
|
|
|
|
|
920 |
|
921 |
color_display.select(on_color_display_select,inputs=[color_display], outputs=[selected_row])
|
922 |
color_display.input(on_input,inputs=[color_display], outputs=[color_display, gr.State(excluded_color_list)])
|
@@ -1004,8 +1015,8 @@ def main(debug):
|
|
1004 |
outputs=[bordered_image_output],
|
1005 |
scroll_to_output=True
|
1006 |
)
|
1007 |
-
|
1008 |
-
beeuty.queue(default_concurrency_limit=
|
1009 |
beeuty.launch(allowed_paths=["assets","/","./assets","images","./images", "./images/prerendered"], favicon_path="./assets/favicon.ico", max_file_size="10mb")
|
1010 |
|
1011 |
|
@@ -1014,12 +1025,13 @@ if __name__ == "__main__":
|
|
1014 |
format="[%(levelname)s] %(asctime)s %(message)s", level=logging.INFO
|
1015 |
)
|
1016 |
logging.info("Environment Variables: %s" % os.environ)
|
1017 |
-
if _get_output(["nvcc", "--version"]) is None:
|
1018 |
-
|
1019 |
-
|
1020 |
-
else:
|
1021 |
-
|
1022 |
-
|
1023 |
-
logging.info("Installing CUDA extensions...")
|
1024 |
-
setup_runtime_env()
|
1025 |
-
main(os.getenv("DEBUG") == "1")
|
|
|
|
1 |
import os
|
2 |
# Import constants
|
3 |
+
import numpy as np
|
4 |
+
import torch
|
5 |
import utils.constants as constants
|
6 |
import gradio as gr
|
7 |
from PIL import Image
|
|
|
12 |
import atexit
|
13 |
import random
|
14 |
import logging
|
15 |
+
import accelerate
|
16 |
+
from transformers import AutoTokenizer
|
17 |
+
import gc
|
18 |
|
19 |
IS_SHARED_SPACE = constants.IS_SHARED_SPACE
|
20 |
|
|
|
62 |
# )
|
63 |
from utils.version_info import (
|
64 |
versions_html,
|
65 |
+
#initialize_cuda,
|
66 |
+
#release_torch_resources,
|
67 |
get_torch_info
|
68 |
)
|
69 |
from utils.lora_details import (
|
70 |
+
upd_prompt_notes,
|
71 |
+
split_prompt_precisely,
|
72 |
+
approximate_token_count,
|
73 |
+
get_trigger_words
|
74 |
)
|
75 |
+
from diffusers import FluxPipeline,FluxImg2ImgPipeline,FluxControlPipeline
|
76 |
+
|
77 |
+
PIPELINE_CLASSES = {
|
78 |
+
"FluxPipeline": FluxPipeline,
|
79 |
+
"FluxImg2ImgPipeline": FluxImg2ImgPipeline,
|
80 |
+
"FluxControlPipeline": FluxControlPipeline
|
81 |
+
}
|
82 |
+
|
83 |
+
import spaces
|
84 |
|
85 |
input_image_palette = []
|
86 |
current_prerendered_image = gr.State("./images/images/Beeuty-1.png")
|
|
|
179 |
default_model = model_textbox
|
180 |
return default_model, []
|
181 |
|
182 |
+
@spaces.GPU(progress=gr.Progress(track_tqdm=True))
|
183 |
+
def generate_image_lowmem(
|
184 |
+
text,
|
185 |
+
neg_prompt=None,
|
186 |
+
model_name="black-forest-labs/FLUX.1-dev",
|
187 |
+
lora_weights=None,
|
188 |
+
conditioned_image=None,
|
189 |
+
image_width=1368,
|
190 |
+
image_height=848,
|
191 |
+
guidance_scale=3.5,
|
192 |
+
num_inference_steps=30,
|
193 |
+
seed=0,
|
194 |
+
true_cfg_scale=1.0,
|
195 |
+
pipeline_name="FluxPipeline",
|
196 |
+
strength=0.75,
|
197 |
+
additional_parameters=None,
|
198 |
+
progress=gr.Progress(track_tqdm=True)
|
199 |
+
):
|
200 |
+
#from torch import cuda, bfloat16, float32, Generator, no_grad, backends
|
201 |
+
# Retrieve the pipeline class from the mapping
|
202 |
+
pipeline_class = PIPELINE_CLASSES.get(pipeline_name)
|
203 |
+
if not pipeline_class:
|
204 |
+
raise ValueError(f"Unsupported pipeline type '{pipeline_name}'. "
|
205 |
+
f"Available options: {list(PIPELINE_CLASSES.keys())}")
|
206 |
+
|
207 |
+
#initialize_cuda()
|
208 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
209 |
+
from src.condition import Condition
|
210 |
+
|
211 |
+
print(f"device:{device}\nmodel_name:{model_name}\nlora_weights:{lora_weights}\n")
|
212 |
+
#print(f"\n {get_torch_info()}\n")
|
213 |
+
# Disable gradient calculations
|
214 |
+
with torch.no_grad():
|
215 |
+
# Initialize the pipeline inside the context manager
|
216 |
+
pipe = pipeline_class.from_pretrained(
|
217 |
+
model_name,
|
218 |
+
torch_dtype=torch.bfloat16 if device == "cuda" else torch.float32
|
219 |
+
).to(device)
|
220 |
+
# Optionally, don't use CPU offload if not necessary
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
221 |
|
222 |
+
# alternative version that may be more efficient
|
223 |
+
# pipe.enable_sequential_cpu_offload()
|
224 |
+
if pipeline_name == "FluxPipeline":
|
225 |
+
pipe.enable_model_cpu_offload()
|
226 |
+
pipe.vae.enable_slicing()
|
227 |
+
pipe.vae.enable_tiling()
|
228 |
+
else:
|
229 |
+
pipe.enable_model_cpu_offload()
|
230 |
+
|
231 |
+
# Access the tokenizer from the pipeline
|
232 |
+
tokenizer = pipe.tokenizer
|
233 |
+
|
234 |
+
# Check if add_prefix_space is set and convert to slow tokenizer if necessary
|
235 |
+
if getattr(tokenizer, 'add_prefix_space', False):
|
236 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False, device_map = 'cpu')
|
237 |
+
# Update the pipeline's tokenizer
|
238 |
+
pipe.tokenizer = tokenizer
|
239 |
+
pipe.to(device)
|
240 |
+
|
241 |
+
flash_attention_enabled = torch.backends.cuda.flash_sdp_enabled()
|
242 |
+
if flash_attention_enabled == False:
|
243 |
+
#Enable xFormers memory-efficient attention (optional)
|
244 |
+
#pipe.enable_xformers_memory_efficient_attention()
|
245 |
+
print("\nEnabled xFormers memory-efficient attention.\n")
|
246 |
+
else:
|
247 |
+
pipe.attn_implementation="flash_attention_2"
|
248 |
+
print("\nEnabled flash_attention_2.\n")
|
249 |
+
|
250 |
+
condition_type = "subject"
|
251 |
+
# Load LoRA weights
|
252 |
+
# note: does not yet handle multiple LoRA weights with different names, needs .set_adapters(["depth", "hyper-sd"], adapter_weights=[0.85, 0.125])
|
253 |
+
if lora_weights:
|
254 |
+
for lora_weight in lora_weights:
|
255 |
+
lora_configs = constants.LORA_DETAILS.get(lora_weight, [])
|
256 |
+
lora_weight_set = False
|
257 |
+
if lora_configs:
|
258 |
+
for config in lora_configs:
|
259 |
+
# Load LoRA weights with optional weight_name and adapter_name
|
260 |
+
if 'weight_name' in config:
|
261 |
+
weight_name = config.get("weight_name")
|
262 |
+
adapter_name = config.get("adapter_name")
|
263 |
+
lora_collection = config.get("lora_collection")
|
264 |
+
if weight_name and adapter_name and lora_collection and lora_weight_set == False:
|
265 |
+
pipe.load_lora_weights(
|
266 |
+
lora_collection,
|
267 |
+
weight_name=weight_name,
|
268 |
+
adapter_name=adapter_name,
|
269 |
+
token=constants.HF_API_TOKEN
|
270 |
+
)
|
271 |
+
lora_weight_set = True
|
272 |
+
print(f"\npipe.load_lora_weights({lora_weight}, weight_name={weight_name}, adapter_name={adapter_name}, lora_collection={lora_collection}\n")
|
273 |
+
elif weight_name and adapter_name==None and lora_collection and lora_weight_set == False:
|
274 |
+
pipe.load_lora_weights(
|
275 |
+
lora_collection,
|
276 |
+
weight_name=weight_name,
|
277 |
+
token=constants.HF_API_TOKEN
|
278 |
+
)
|
279 |
+
lora_weight_set = True
|
280 |
+
print(f"\npipe.load_lora_weights({lora_weight}, weight_name={weight_name}, adapter_name={adapter_name}, lora_collection={lora_collection}\n")
|
281 |
+
elif weight_name and adapter_name and lora_weight_set == False:
|
282 |
+
pipe.load_lora_weights(
|
283 |
+
lora_weight,
|
284 |
+
weight_name=weight_name,
|
285 |
+
adapter_name=adapter_name,
|
286 |
+
token=constants.HF_API_TOKEN
|
287 |
+
)
|
288 |
+
lora_weight_set = True
|
289 |
+
print(f"\npipe.load_lora_weights({lora_weight}, weight_name={weight_name}, adapter_name={adapter_name}\n")
|
290 |
+
elif weight_name and adapter_name==None and lora_weight_set == False:
|
291 |
+
pipe.load_lora_weights(
|
292 |
+
lora_weight,
|
293 |
+
weight_name=weight_name,
|
294 |
+
token=constants.HF_API_TOKEN
|
295 |
+
)
|
296 |
+
lora_weight_set = True
|
297 |
+
print(f"\npipe.load_lora_weights({lora_weight}, weight_name={weight_name}, adapter_name={adapter_name}\n")
|
298 |
+
elif lora_weight_set == False:
|
299 |
+
pipe.load_lora_weights(
|
300 |
+
lora_weight,
|
301 |
+
token=constants.HF_API_TOKEN
|
302 |
+
)
|
303 |
+
lora_weight_set = True
|
304 |
+
print(f"\npipe.load_lora_weights({lora_weight}, weight_name={weight_name}, adapter_name={adapter_name}\n")
|
305 |
+
# Apply 'pipe' configurations if present
|
306 |
+
if 'pipe' in config:
|
307 |
+
pipe_config = config['pipe']
|
308 |
+
for method_name, params in pipe_config.items():
|
309 |
+
method = getattr(pipe, method_name, None)
|
310 |
+
if method:
|
311 |
+
print(f"Applying pipe method: {method_name} with params: {params}")
|
312 |
+
method(**params)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
313 |
else:
|
314 |
+
print(f"Method {method_name} not found in pipe.")
|
315 |
+
if 'condition_type' in config:
|
316 |
+
condition_type = config['condition_type']
|
317 |
+
if condition_type == "coloring":
|
318 |
+
#pipe.enable_coloring()
|
319 |
+
print("\nEnabled coloring.\n")
|
320 |
+
elif condition_type == "deblurring":
|
321 |
+
#pipe.enable_deblurring()
|
322 |
+
print("\nEnabled deblurring.\n")
|
323 |
+
elif condition_type == "fill":
|
324 |
+
#pipe.enable_fill()
|
325 |
+
print("\nEnabled fill.\n")
|
326 |
+
elif condition_type == "depth":
|
327 |
+
#pipe.enable_depth()
|
328 |
+
print("\nEnabled depth.\n")
|
329 |
+
elif condition_type == "canny":
|
330 |
+
#pipe.enable_canny()
|
331 |
+
print("\nEnabled canny.\n")
|
332 |
+
elif condition_type == "subject":
|
333 |
+
#pipe.enable_subject()
|
334 |
+
print("\nEnabled subject.\n")
|
335 |
+
else:
|
336 |
+
print(f"Condition type {condition_type} not implemented.")
|
337 |
+
else:
|
338 |
+
pipe.load_lora_weights(lora_weight, use_auth_token=constants.HF_API_TOKEN)
|
339 |
+
# Set the random seed for reproducibility
|
340 |
+
generator = torch.Generator(device=device).manual_seed(seed)
|
341 |
+
conditions = []
|
342 |
+
if conditioned_image is not None:
|
343 |
+
conditioned_image = crop_and_resize_image(conditioned_image, image_width, image_height)
|
344 |
+
condition = Condition(condition_type, conditioned_image)
|
345 |
+
conditions.append(condition)
|
346 |
+
print(f"\nAdded conditioned image.\n {conditioned_image.size}")
|
347 |
+
# Prepare the parameters for image generation
|
348 |
+
additional_parameters ={
|
349 |
+
"strength": strength,
|
350 |
+
"image": conditioned_image,
|
351 |
+
}
|
352 |
+
else:
|
353 |
+
print("\nNo conditioned image provided.")
|
354 |
+
if neg_prompt!=None:
|
355 |
+
true_cfg_scale=1.1
|
356 |
+
additional_parameters ={
|
357 |
+
"negative_prompt": neg_prompt,
|
358 |
+
"true_cfg_scale": true_cfg_scale,
|
359 |
+
}
|
360 |
+
# handle long prompts by splitting them
|
361 |
+
if approximate_token_count(text) > 76:
|
362 |
+
prompt, prompt2 = split_prompt_precisely(text)
|
363 |
+
prompt_parameters = {
|
364 |
+
"prompt" : prompt,
|
365 |
+
"prompt_2": prompt2
|
366 |
}
|
367 |
+
else:
|
368 |
+
prompt_parameters = {
|
369 |
+
"prompt" :text
|
370 |
+
}
|
371 |
+
additional_parameters.update(prompt_parameters)
|
372 |
+
# Combine all parameters
|
373 |
+
generate_params = {
|
374 |
+
"height": image_height,
|
375 |
+
"width": image_width,
|
376 |
+
"guidance_scale": guidance_scale,
|
377 |
+
"num_inference_steps": num_inference_steps,
|
378 |
+
"generator": generator, }
|
379 |
+
if additional_parameters:
|
380 |
+
generate_params.update(additional_parameters)
|
381 |
+
generate_params = {k: v for k, v in generate_params.items() if v is not None}
|
382 |
+
print(f"generate_params: {generate_params}")
|
383 |
+
# Generate the image
|
384 |
+
result = pipe(**generate_params)
|
385 |
+
image = result.images[0]
|
386 |
+
# Clean up
|
387 |
+
del result
|
388 |
+
del conditions
|
389 |
+
del generator
|
390 |
+
# Delete the pipeline and clear cache
|
391 |
+
del pipe
|
392 |
+
torch.cuda.empty_cache()
|
393 |
+
torch.cuda.ipc_collect()
|
394 |
+
print(torch.cuda.memory_summary(device=None, abbreviated=False))
|
395 |
|
396 |
+
return image
|
397 |
+
|
398 |
+
def generate_ai_image_local (
|
399 |
+
map_option,
|
400 |
+
prompt_textbox_value,
|
401 |
+
neg_prompt_textbox_value,
|
402 |
+
model="black-forest-labs/FLUX.1-dev",
|
403 |
+
lora_weights=None,
|
404 |
+
conditioned_image=None,
|
405 |
+
height=512,
|
406 |
+
width=912,
|
407 |
+
num_inference_steps=30,
|
408 |
+
guidance_scale=3.5,
|
409 |
+
seed=777,
|
410 |
+
pipeline_name="FluxPipeline",
|
411 |
+
strength=0.75,
|
412 |
+
progress=gr.Progress(track_tqdm=True)
|
413 |
+
):
|
414 |
+
print(f"Generating image with lowmem")
|
415 |
+
try:
|
416 |
+
if map_option != "Prompt":
|
417 |
+
prompt = constants.PROMPTS[map_option]
|
418 |
+
negative_prompt = constants.NEGATIVE_PROMPTS.get(map_option, "")
|
419 |
+
else:
|
420 |
+
prompt = prompt_textbox_value
|
421 |
+
negative_prompt = neg_prompt_textbox_value or ""
|
422 |
+
#full_prompt = f"{prompt} {negative_prompt}"
|
423 |
+
additional_parameters = {}
|
424 |
+
if lora_weights:
|
425 |
+
for lora_weight in lora_weights:
|
426 |
+
lora_configs = constants.LORA_DETAILS.get(lora_weight, [])
|
427 |
+
for config in lora_configs:
|
428 |
+
if 'parameters' in config:
|
429 |
+
additional_parameters.update(config['parameters'])
|
430 |
+
elif 'trigger_words' in config:
|
431 |
+
trigger_words = get_trigger_words(lora_weight)
|
432 |
+
prompt = f"{trigger_words} {prompt}"
|
433 |
+
for key, value in additional_parameters.items():
|
434 |
+
if key in ['height', 'width', 'num_inference_steps', 'max_sequence_length']:
|
435 |
+
additional_parameters[key] = int(value)
|
436 |
+
elif key in ['guidance_scale','true_cfg_scale']:
|
437 |
+
additional_parameters[key] = float(value)
|
438 |
+
height = additional_parameters.pop('height', height)
|
439 |
+
width = additional_parameters.pop('width', width)
|
440 |
+
num_inference_steps = additional_parameters.pop('num_inference_steps', num_inference_steps)
|
441 |
+
guidance_scale = additional_parameters.pop('guidance_scale', guidance_scale)
|
442 |
+
print("Generating image with the following parameters:")
|
443 |
+
print(f"Model: {model}")
|
444 |
+
print(f"LoRA Weights: {lora_weights}")
|
445 |
+
print(f"Prompt: {prompt}")
|
446 |
+
print(f"Neg Prompt: {negative_prompt}")
|
447 |
+
print(f"Height: {height}")
|
448 |
+
print(f"Width: {width}")
|
449 |
+
print(f"Number of Inference Steps: {num_inference_steps}")
|
450 |
+
print(f"Guidance Scale: {guidance_scale}")
|
451 |
+
print(f"Seed: {seed}")
|
452 |
+
print(f"Additional Parameters: {additional_parameters}")
|
453 |
+
print(f"Conditioned Image: {conditioned_image}")
|
454 |
+
print(f"Conditioned Image Strength: {strength}")
|
455 |
+
print(f"pipeline: {pipeline_name}")
|
456 |
+
image = generate_image_lowmem(
|
457 |
+
text=prompt,
|
458 |
+
model_name=model,
|
459 |
+
neg_prompt=negative_prompt,
|
460 |
+
lora_weights=lora_weights,
|
461 |
+
conditioned_image=conditioned_image,
|
462 |
+
image_width=width,
|
463 |
+
image_height=height,
|
464 |
+
guidance_scale=guidance_scale,
|
465 |
+
num_inference_steps=num_inference_steps,
|
466 |
+
seed=seed,
|
467 |
+
pipeline_name=pipeline_name,
|
468 |
+
strength=strength,
|
469 |
+
additional_parameters=additional_parameters
|
470 |
+
)
|
471 |
+
with NamedTemporaryFile(delete=False, suffix=".png") as tmp:
|
472 |
+
image.save(tmp.name, format="PNG")
|
473 |
+
constants.temp_files.append(tmp.name)
|
474 |
+
print(f"Image saved to {tmp.name}")
|
475 |
+
#release_torch_resources()
|
|
|
|
|
|
|
|
|
|
|
|
|
476 |
gc.collect()
|
477 |
+
return tmp.name
|
478 |
+
except Exception as e:
|
479 |
+
print(f"Error generating AI image: {e}")
|
480 |
+
#release_torch_resources()
|
481 |
+
gc.collect()
|
482 |
+
return None
|
483 |
+
|
484 |
+
@spaces.GPU(duration=140,progress=gr.Progress(track_tqdm=True))
|
485 |
+
def generate_input_image_click(map_option, prompt_textbox_value, negative_prompt_textbox_value, model_textbox_value, randomize_seed=True, seed=None, use_conditioned_image=False, strength=0.5, image_format="16:9", scale_factor=(8/3), progress=gr.Progress(track_tqdm=True)):
|
486 |
+
if randomize_seed:
|
487 |
+
seed = random.randint(0, constants.MAX_SEED)
|
488 |
+
|
489 |
# Get the model and LoRA weights
|
490 |
model, lora_weights = get_model_and_lora(model_textbox_value)
|
491 |
global current_prerendered_image
|
|
|
571 |
margin_color = detect_color_format(blank_color)
|
572 |
print(f"Adding border to image with width: {mask_width}, height: {mask_height}, color: {margin_color}")
|
573 |
return shrink_and_paste_on_blank(bordered_image_output, mask_width, mask_height, margin_color)
|
574 |
+
|
575 |
+
@spaces.GPU()
|
576 |
+
def getVersions():
|
577 |
+
return versions_html()
|
578 |
+
generate_input_image_click.zerogpu = True
|
579 |
+
def main(debug=False):
|
580 |
title = "HexaGrid Creator"
|
581 |
#description = "Customizable Hexagon Grid Image Generator"
|
582 |
examples = [["assets//examples//hex_map_p1.png", 32, 1, 0, 0, 0, 0, 0, "#ede9ac44","#12165380", True]]
|
|
|
802 |
# Gallery from PRE_RENDERED_IMAGES GOES HERE
|
803 |
prerendered_image_gallery = gr.Gallery(label="Image Gallery", show_label=True, value=build_prerendered_images(constants.pre_rendered_maps_paths), elem_id="gallery", elem_classes="solid", type="filepath", columns=[3], rows=[3], preview=False ,object_fit="contain", height="auto", format="png",allow_preview=False)
|
804 |
with gr.Row():
|
805 |
+
image_guidance_stength = gr.Slider(label="Image Guidance Strength (prompt <-> image)", minimum=0, maximum=1.0, value=0.5, step=0.01, interactive=True)
|
806 |
with gr.Column():
|
807 |
replace_input_image_button = gr.Button(
|
808 |
"Replace Input Image",
|
|
|
899 |
],
|
900 |
inputs=[input_image, filter_color, fill_hex, start_x, start_y, end_x, end_y, x_spacing, y_spacing, hex_size, rotation, border_size, border_color, border_opacity],
|
901 |
elem_id="examples")
|
|
|
|
|
902 |
with gr.Row():
|
903 |
+
gr.HTML(value=getVersions(), visible=True, elem_id="versions")
|
904 |
+
# with gr.Row():
|
905 |
+
# reinstall_torch = gr.Button("Reinstall Torch", elem_classes="solid small", variant="secondary")
|
906 |
+
# reinstall_cuda_toolkit = gr.Button("Install CUDA Toolkit", elem_classes="solid small", variant="secondary")
|
907 |
+
# reinitialize_cuda = gr.Button("Reinitialize CUDA", elem_classes="solid small", variant="secondary")
|
908 |
+
# torch_release = gr.Button("Release Torch Resources", elem_classes="solid small", variant="secondary")
|
909 |
+
|
910 |
+
# reinitialize_cuda.click(
|
911 |
+
# fn=initialize_cuda,
|
912 |
+
# inputs=[],
|
913 |
+
# outputs=[]
|
914 |
+
# )
|
915 |
+
# torch_release.click(
|
916 |
+
# fn=release_torch_resources,
|
917 |
+
# inputs=[],
|
918 |
+
# outputs=[]
|
919 |
+
# )
|
920 |
+
# reinstall_torch.click(
|
921 |
+
# fn=install_torch,
|
922 |
+
# inputs=[],
|
923 |
+
# outputs=[]
|
924 |
+
# )
|
925 |
+
|
926 |
+
# reinstall_cuda_toolkit.click(
|
927 |
+
# fn=install_cuda_toolkit,
|
928 |
+
# inputs=[],
|
929 |
+
# outputs=[]
|
930 |
+
# )
|
931 |
|
932 |
color_display.select(on_color_display_select,inputs=[color_display], outputs=[selected_row])
|
933 |
color_display.input(on_input,inputs=[color_display], outputs=[color_display, gr.State(excluded_color_list)])
|
|
|
1015 |
outputs=[bordered_image_output],
|
1016 |
scroll_to_output=True
|
1017 |
)
|
1018 |
+
|
1019 |
+
beeuty.queue(default_concurrency_limit=2,max_size=12,api_open=False)
|
1020 |
beeuty.launch(allowed_paths=["assets","/","./assets","images","./images", "./images/prerendered"], favicon_path="./assets/favicon.ico", max_file_size="10mb")
|
1021 |
|
1022 |
|
|
|
1025 |
format="[%(levelname)s] %(asctime)s %(message)s", level=logging.INFO
|
1026 |
)
|
1027 |
logging.info("Environment Variables: %s" % os.environ)
|
1028 |
+
# if _get_output(["nvcc", "--version"]) is None:
|
1029 |
+
# logging.info("Installing CUDA toolkit...")
|
1030 |
+
# install_cuda_toolkit()
|
1031 |
+
# else:
|
1032 |
+
# logging.info("Detected CUDA: %s" % _get_output(["nvcc", "--version"]))
|
1033 |
+
|
1034 |
+
# logging.info("Installing CUDA extensions...")
|
1035 |
+
# setup_runtime_env()
|
1036 |
+
#main(os.getenv("DEBUG") == "1")
|
1037 |
+
main()
|
utils/ai_generator_diffusers_flux.py
CHANGED
@@ -5,7 +5,7 @@ import utils.constants as constants
|
|
5 |
import gradio as gr
|
6 |
from torch import __version__ as torch_version_, version, cuda, bfloat16, float32, Generator, no_grad, backends
|
7 |
from diffusers import FluxPipeline,FluxImg2ImgPipeline,FluxControlPipeline
|
8 |
-
|
9 |
from transformers import AutoTokenizer
|
10 |
import safetensors
|
11 |
#import xformers
|
@@ -19,9 +19,9 @@ from utils.image_utils import (
|
|
19 |
)
|
20 |
from utils.version_info import (
|
21 |
get_torch_info,
|
22 |
-
get_diffusers_version,
|
23 |
-
get_transformers_version,
|
24 |
-
get_xformers_version,
|
25 |
initialize_cuda,
|
26 |
release_torch_resources
|
27 |
)
|
|
|
5 |
import gradio as gr
|
6 |
from torch import __version__ as torch_version_, version, cuda, bfloat16, float32, Generator, no_grad, backends
|
7 |
from diffusers import FluxPipeline,FluxImg2ImgPipeline,FluxControlPipeline
|
8 |
+
import accelerate
|
9 |
from transformers import AutoTokenizer
|
10 |
import safetensors
|
11 |
#import xformers
|
|
|
19 |
)
|
20 |
from utils.version_info import (
|
21 |
get_torch_info,
|
22 |
+
# get_diffusers_version,
|
23 |
+
# get_transformers_version,
|
24 |
+
# get_xformers_version,
|
25 |
initialize_cuda,
|
26 |
release_torch_resources
|
27 |
)
|
utils/constants.py
CHANGED
@@ -40,6 +40,7 @@ if not HF_API_TOKEN:
|
|
40 |
|
41 |
default_lut_example_img = "./LUT/daisy.jpg"
|
42 |
MAX_SEED = np.iinfo(np.int32).max
|
|
|
43 |
|
44 |
PROMPTS = {
|
45 |
"BorderBlack": "Top-down view of a hexagon-based alien map with black borders. Features rivers, mountains, volcanoes, and snow at top and bottom. Colors: light blue, green, tan, brown. No reflections or shadows. Partial hexes on edges are black.",
|
|
|
40 |
|
41 |
default_lut_example_img = "./LUT/daisy.jpg"
|
42 |
MAX_SEED = np.iinfo(np.int32).max
|
43 |
+
TARGET_SIZE = (2688,1536)
|
44 |
|
45 |
PROMPTS = {
|
46 |
"BorderBlack": "Top-down view of a hexagon-based alien map with black borders. Features rivers, mountains, volcanoes, and snow at top and bottom. Colors: light blue, green, tan, brown. No reflections or shadows. Partial hexes on edges are black.",
|
utils/version_info.py
CHANGED
@@ -106,7 +106,7 @@ def versions_html():
|
|
106 |
 • 
|
107 |
transformers: {get_transformers_version()}
|
108 |
 • 
|
109 |
-
|
110 |
 • 
|
111 |
gradio: {gr.__version__}
|
112 |
 • 
|
|
|
106 |
 • 
|
107 |
transformers: {get_transformers_version()}
|
108 |
 • 
|
109 |
+
safetensors: {get_safetensors_version()}
|
110 |
 • 
|
111 |
gradio: {gr.__version__}
|
112 |
 • 
|
web-ui.bat
CHANGED
@@ -1,2 +1,5 @@
|
|
1 |
-
|
|
|
|
|
|
|
2 |
pause
|
|
|
1 |
+
set NVIDIA_VISIBLE_DEVICES=0
|
2 |
+
set CUDA_VISIBLE_DEVICES=0
|
3 |
+
set CUDA_MODULE_LOADING=LAZY
|
4 |
+
python -m app
|
5 |
pause
|