|
|
|
import os |
|
from io import BytesIO |
|
import cairosvg |
|
import base64 |
|
import numpy as np |
|
|
|
from PIL import Image, ImageChops, ImageDraw, ImageEnhance, ImageFilter, ImageDraw, ImageOps, ImageMath |
|
from typing import List, Union, is_typeddict |
|
|
|
|
|
from pathlib import Path |
|
from utils.constants import default_lut_example_img, PRE_RENDERED_MAPS_JSON_LEVELS |
|
from utils.color_utils import ( |
|
detect_color_format, |
|
update_color_opacity |
|
) |
|
from utils.file_utils import rename_file_to_lowercase_extension |
|
|
|
def get_image_from_dict(image_path): |
|
if isinstance(image_path, dict) : |
|
if 'image' in image_path: |
|
image_path = image_path.get('image') |
|
elif 'composite' in image_path: |
|
image_path = image_path.get('composite') |
|
else: |
|
print("\n Unknown image dictionary.\n") |
|
raise UserWarning("Unknown image dictionary.") |
|
return image_path, True |
|
else: |
|
return image_path, False |
|
|
|
def open_image(image_path): |
|
""" |
|
Opens an image from a file path or URL, or decodes a DataURL string into an image. |
|
Supports SVG and ICO by converting them to PNG. |
|
|
|
Parameters: |
|
image_path (str): The file path, URL, or DataURL string of the image to open. |
|
|
|
Returns: |
|
Image: A PIL Image object of the opened image. |
|
|
|
Raises: |
|
Exception: If there is an error opening the image. |
|
""" |
|
if isinstance(image_path, Image.Image): |
|
return image_path |
|
else: |
|
image_path = rename_file_to_lowercase_extension(image_path) |
|
|
|
import requests |
|
try: |
|
image_path, is_dict = get_image_from_dict(image_path) |
|
|
|
image_path = image_path.strip('"') |
|
if image_path.startswith('http'): |
|
response = requests.get(image_path) |
|
if image_path.lower().endswith('.svg'): |
|
png_data = cairosvg.svg2png(bytestring=response.content) |
|
img = Image.open(BytesIO(png_data)) |
|
elif image_path.lower().endswith('.ico'): |
|
img = Image.open(BytesIO(response.content)).convert('RGBA') |
|
else: |
|
img = Image.open(BytesIO(response.content)) |
|
elif image_path.startswith('data'): |
|
encoded_data = image_path.split(',')[1] |
|
decoded_data = base64.b64decode(encoded_data) |
|
if image_path.lower().endswith('.svg'): |
|
png_data = cairosvg.svg2png(bytestring=decoded_data) |
|
img = Image.open(BytesIO(png_data)) |
|
elif image_path.lower().endswith('.ico'): |
|
img = Image.open(BytesIO(decoded_data)).convert('RGBA') |
|
else: |
|
img = Image.open(BytesIO(decoded_data)) |
|
else: |
|
if image_path.lower().endswith('.svg'): |
|
png_data = cairosvg.svg2png(url=image_path) |
|
img = Image.open(BytesIO(png_data)) |
|
elif image_path.lower().endswith('.ico'): |
|
img = Image.open(image_path).convert('RGBA') |
|
else: |
|
img = Image.open(image_path) |
|
except Exception as e: |
|
raise Exception(f'Error opening image: {e}') |
|
return img |
|
|
|
def build_prerendered_images(images_list): |
|
""" |
|
Opens a list of images from file paths, URLs, or DataURL strings. |
|
|
|
Parameters: |
|
images_list (list): A list of file paths, URLs, or DataURL strings of the images to open. |
|
|
|
Returns: |
|
list: A list of PIL Image objects of the opened images. |
|
""" |
|
return [open_image(image) for image in images_list] |
|
|
|
|
|
|
|
|
|
def build_prerendered_images_by_quality(quality_limit, key='file'): |
|
""" |
|
Retrieve and sort file paths from PRE_RENDERED_MAPS_JSON_LEVELS where quality is less than or equal to the given limit. |
|
The sorting order matches pre_rendered_maps_paths based on quality and a case-insensitive alphanumeric key. |
|
|
|
Args: |
|
quality_limit (int): The quality threshold. |
|
key (str): The key to extract the file path from each map info (default is 'file'). |
|
|
|
Returns: |
|
list: A list of sorted file paths meeting the quality criteria. |
|
""" |
|
|
|
sorted_maps = sorted( |
|
PRE_RENDERED_MAPS_JSON_LEVELS.items(), |
|
key=lambda x: ( |
|
x[1]['quality'], |
|
''.join(char.lower() for char in x[0] if char.isalnum()) |
|
) |
|
) |
|
|
|
|
|
images_list = [ |
|
map_info[key].replace("\\", "/") |
|
for _, map_info in sorted_maps |
|
if map_info['quality'] <= quality_limit |
|
] |
|
|
|
return build_prerendered_images(images_list) |
|
|
|
|
|
def build_encoded_images(images_list): |
|
""" |
|
Encodes a list of images to base64 strings. |
|
|
|
Parameters: |
|
images_list (list): A list of file paths, URLs, DataURL strings, or PIL Image objects of the images to encode. |
|
|
|
Returns: |
|
list: A list of base64-encoded strings of the images. |
|
""" |
|
return [image_to_base64(image) for image in images_list] |
|
|
|
def image_to_base64(image): |
|
""" |
|
Encodes an image to a base64 string. |
|
Supports ICO files by converting them to PNG with RGBA channels. |
|
|
|
Parameters: |
|
image (str or PIL.Image.Image): The file path, URL, DataURL string, or PIL Image object of the image to encode. |
|
|
|
Returns: |
|
str: A base64-encoded string of the image. |
|
""" |
|
buffered = BytesIO() |
|
if isinstance(image, str): |
|
image = open_image(image) |
|
image.save(buffered, format="PNG") |
|
return "data:image/png;base64," + base64.b64encode(buffered.getvalue()).decode() |
|
|
|
def change_color(image, color, opacity=0.75): |
|
""" |
|
Changes the color of an image by overlaying it with a specified color and opacity. |
|
|
|
Parameters: |
|
image (str or PIL.Image.Image): The file path, URL, DataURL string, or PIL Image object of the image to change. |
|
color (str or tuple): The color to overlay on the image. |
|
opacity (float): The opacity of the overlay color (0.0 to 1.0). |
|
|
|
Returns: |
|
PIL.Image.Image: The image with the color changed. |
|
""" |
|
if type(image) is str: |
|
image = open_image(image) |
|
try: |
|
|
|
rgba_color = detect_color_format(color) |
|
rgba_color = update_color_opacity(rgba_color, opacity) |
|
|
|
|
|
image = image.convert("RGBA") |
|
|
|
|
|
new_image = Image.new("RGBA", image.size, rgba_color) |
|
|
|
|
|
result = Image.alpha_composite(image, new_image) |
|
except Exception as e: |
|
print(f"Error changing color: {e}") |
|
return image |
|
return result |
|
|
|
def convert_str_to_int_or_zero(value): |
|
""" |
|
Converts a string to an integer, or returns zero if the conversion fails. |
|
|
|
Parameters: |
|
value (str): The string to convert. |
|
|
|
Returns: |
|
int: The converted integer, or zero if the conversion fails. |
|
""" |
|
try: |
|
return int(value) |
|
except ValueError: |
|
return 0 |
|
|
|
def upscale_image(image, scale_factor): |
|
""" |
|
Upscales an image by a given scale factor using the LANCZOS filter. |
|
|
|
Parameters: |
|
image (PIL.Image.Image): The input image to be upscaled. |
|
scale_factor (float): The factor by which to upscale the image. |
|
|
|
Returns: |
|
PIL.Image.Image: The upscaled image. |
|
""" |
|
|
|
new_width = int(image.width * scale_factor) |
|
new_height = int(image.height * scale_factor) |
|
|
|
|
|
upscaled_image = image.resize((new_width, new_height), Image.LANCZOS) |
|
|
|
return upscaled_image |
|
|
|
def crop_and_resize_image(image, width, height): |
|
""" |
|
Crops the image to a centered square and resizes it to the specified width and height. |
|
|
|
Parameters: |
|
image (PIL.Image.Image): The input image to be cropped and resized. |
|
width (int): The desired width of the output image. |
|
height (int): The desired height of the output image. |
|
|
|
Returns: |
|
PIL.Image.Image: The cropped and resized image. |
|
""" |
|
|
|
original_width, original_height = image.size |
|
|
|
|
|
min_dim = min(original_width, original_height) |
|
|
|
|
|
left = (original_width - min_dim) // 2 |
|
top = (original_height - min_dim) // 2 |
|
right = left + min_dim |
|
bottom = top + min_dim |
|
|
|
|
|
cropped_image = image.crop((left, top, right, bottom)) |
|
|
|
|
|
resized_image = cropped_image.resize((width, height), Image.LANCZOS) |
|
|
|
return resized_image |
|
|
|
def resize_image_with_aspect_ratio(image, target_width, target_height): |
|
""" |
|
Resizes the image to fit within the target dimensions while maintaining aspect ratio. |
|
If the aspect ratio does not match, the image will be padded with black pixels. |
|
|
|
Parameters: |
|
image (PIL.Image.Image): The input image to be resized. |
|
target_width (int): The target width. |
|
target_height (int): The target height. |
|
|
|
Returns: |
|
PIL.Image.Image: The resized image. |
|
""" |
|
|
|
original_width, original_height = image.size |
|
target_aspect = target_width / target_height |
|
original_aspect = original_width / original_height |
|
|
|
|
|
if original_aspect > target_aspect: |
|
|
|
new_width = target_width |
|
new_height = int(target_width / original_aspect) |
|
else: |
|
|
|
new_height = target_height |
|
new_width = int(target_height * original_aspect) |
|
|
|
|
|
resized_image = image.resize((new_width, new_height), Image.LANCZOS) |
|
|
|
|
|
new_image = Image.new("RGB", (target_width, target_height), (0, 0, 0)) |
|
|
|
paste_x = (target_width - new_width) // 2 |
|
paste_y = (target_height - new_height) // 2 |
|
new_image.paste(resized_image, (paste_x, paste_y)) |
|
|
|
return new_image |
|
|
|
def lerp_imagemath(img1, img2, alpha_percent: int = 50): |
|
""" |
|
Performs linear interpolation (LERP) between two images based on the given alpha value. |
|
|
|
Parameters: |
|
img1 (str or PIL.Image.Image): The first image or its file path. |
|
img2 (str or PIL.Image.Image): The second image or its file path. |
|
alpha (int): The interpolation factor (0 to 100). |
|
|
|
Returns: |
|
PIL.Image.Image: The interpolated image. |
|
""" |
|
if isinstance(img1, str): |
|
img1 = open_image(img1) |
|
if isinstance(img2, str): |
|
img2 = open_image(img2) |
|
|
|
|
|
img1 = img1.convert('RGBA') |
|
img2 = img2.convert('RGBA') |
|
|
|
|
|
arr1 = np.array(img1, dtype=np.float32) |
|
arr2 = np.array(img2, dtype=np.float32) |
|
|
|
|
|
alpha = alpha_percent / 100.0 |
|
result_arr = (arr1 * (1 - alpha)) + (arr2 * alpha) |
|
|
|
|
|
result_img = Image.fromarray(np.uint8(result_arr)) |
|
|
|
|
|
return result_img |
|
|
|
def shrink_and_paste_on_blank(current_image, mask_width, mask_height, blank_color:tuple[int, int, int, int] = (0,0,0,0)): |
|
""" |
|
Decreases size of current_image by mask_width pixels from each side, |
|
then adds a mask_width width transparent frame, |
|
so that the image the function returns is the same size as the input. |
|
|
|
Parameters: |
|
current_image (PIL.Image.Image): The input image to transform. |
|
mask_width (int): Width in pixels to shrink from each side. |
|
mask_height (int): Height in pixels to shrink from each side. |
|
blank_color (tuple): The color of the blank frame (default is transparent). |
|
|
|
Returns: |
|
PIL.Image.Image: The transformed image. |
|
""" |
|
|
|
width, height = current_image.size |
|
new_width = width - (2 * mask_width) |
|
new_height = height - (2 * mask_height) |
|
|
|
|
|
prev_image = current_image.resize((new_width, new_height)) |
|
blank_image = Image.new("RGBA", (width, height), blank_color) |
|
blank_image.paste(prev_image, (mask_width, mask_height)) |
|
|
|
return blank_image |
|
|
|
def multiply_and_blend_images(base_image, image2, alpha_percent=50): |
|
""" |
|
Multiplies two images and blends the result with the original image. |
|
|
|
Parameters: |
|
image1 (PIL.Image.Image): The first input image. |
|
image2 (PIL.Image.Image): The second input image. |
|
alpha (float): The blend factor (0.0 to 100.0) for blending the multiplied result with the original image. |
|
|
|
Returns: |
|
PIL.Image.Image: The blended image. |
|
""" |
|
alpha = alpha_percent / 100.0 |
|
if isinstance(base_image, str): |
|
base_image = open_image(base_image) |
|
if isinstance(image2, str): |
|
image2 = open_image(image2) |
|
|
|
base_image = base_image.convert('RGBA') |
|
image2 = image2.convert('RGBA') |
|
image2 = image2.resize(base_image.size) |
|
|
|
|
|
multiplied_image = ImageChops.multiply(base_image, image2) |
|
|
|
|
|
blended_image = Image.blend(base_image, multiplied_image, alpha) |
|
|
|
return blended_image |
|
|
|
def alpha_composite_with_control(base_image, image_with_alpha, alpha_percent=100): |
|
""" |
|
Overlays image_with_alpha onto base_image with controlled alpha transparency. |
|
|
|
Parameters: |
|
base_image (PIL.Image.Image): The base image. |
|
image_with_alpha (PIL.Image.Image): The image to overlay with an alpha channel. |
|
alpha_percent (float): The multiplier for the alpha channel (0.0 to 100.0). |
|
|
|
Returns: |
|
PIL.Image.Image: The resulting image after alpha compositing. |
|
""" |
|
image_with_alpha, isdict = get_image_from_dict(image_with_alpha) |
|
alpha_multiplier = alpha_percent / 100.0 |
|
if isinstance(base_image, str): |
|
base_image = open_image(base_image) |
|
if isinstance(image_with_alpha, str): |
|
image_with_alpha = open_image(image_with_alpha) |
|
|
|
|
|
base_image = base_image.convert('RGBA') |
|
image_with_alpha = image_with_alpha.convert('RGBA') |
|
|
|
|
|
alpha_channel = image_with_alpha.split()[3] |
|
alpha_channel = alpha_channel.point(lambda p: p * alpha_multiplier) |
|
|
|
|
|
image_with_alpha.putalpha(alpha_channel) |
|
|
|
|
|
result = Image.alpha_composite(base_image, image_with_alpha) |
|
|
|
return result |
|
|
|
def apply_alpha_mask(image, mask_image, invert = False): |
|
""" |
|
Applies a mask image as the alpha channel of the input image. |
|
|
|
Parameters: |
|
image (PIL.Image.Image): The image to apply the mask to. |
|
mask_image (PIL.Image.Image): The alpha mask to apply. |
|
invert (bool): Whether to invert the mask (default is False). |
|
|
|
Returns: |
|
PIL.Image.Image: The image with the applied alpha mask. |
|
""" |
|
|
|
mask_image = resize_and_crop_image(mask_image, image.width, image.height).convert('L') |
|
if invert: |
|
mask_image = ImageOps.invert(mask_image) |
|
|
|
result_image = image.copy() |
|
result_image.putalpha(mask_image) |
|
return result_image |
|
|
|
def resize_and_crop_image(image: Image, new_width: int = 512, new_height: int = 512) -> Image: |
|
""" |
|
Resizes and crops an image to a specified width and height. This ensures that the entire new_width and new_height |
|
dimensions are filled by the image, and the aspect ratio is maintained. |
|
|
|
Parameters: |
|
image (PIL.Image.Image): The image to be resized and cropped. |
|
new_width (int): The desired width of the new image (default is 512). |
|
new_height (int): The desired height of the new image (default is 512). |
|
|
|
Returns: |
|
PIL.Image.Image: The resized and cropped image. |
|
""" |
|
|
|
orig_width, orig_height = image.size |
|
|
|
orig_aspect_ratio = orig_width / float(orig_height) |
|
new_aspect_ratio = new_width / float(new_height) |
|
|
|
if orig_aspect_ratio > new_aspect_ratio: |
|
|
|
resized_width = int(new_height * orig_aspect_ratio) |
|
resized_height = new_height |
|
left_offset = (resized_width - new_width) // 2 |
|
top_offset = 0 |
|
else: |
|
|
|
resized_width = new_width |
|
resized_height = int(new_width / orig_aspect_ratio) |
|
left_offset = 0 |
|
top_offset = (resized_height - new_height) // 2 |
|
|
|
resized_image = image.resize((resized_width, resized_height), resample=Image.Resampling.LANCZOS) |
|
|
|
cropped_image = resized_image.crop((left_offset, top_offset, left_offset + new_width, top_offset + new_height)) |
|
return cropped_image |
|
|
|
|
|
|
|
def is_3dlut_row(row: List[str]) -> bool: |
|
""" |
|
Check if one line in the file has exactly 3 numeric values. |
|
|
|
Parameters: |
|
row (list): A list of strings representing the values in a row. |
|
|
|
Returns: |
|
bool: True if the row has exactly 3 numeric values, False otherwise. |
|
""" |
|
try: |
|
row_values = [float(val) for val in row] |
|
return len(row_values) == 3 |
|
except ValueError: |
|
return False |
|
|
|
|
|
def read_lut(path_lut: Union[str, os.PathLike], num_channels: int = 3) -> ImageFilter.Color3DLUT: |
|
""" |
|
Read LUT from a raw file. |
|
|
|
Each line in the file is considered part of the LUT table. The function |
|
reads the file, parses the rows, and constructs a Color3DLUT object. |
|
|
|
Args: |
|
path_lut: A string or os.PathLike object representing the path to the LUT file. |
|
num_channels: An integer specifying the number of color channels in the LUT (default is 3). |
|
|
|
Returns: |
|
An instance of ImageFilter.Color3DLUT representing the LUT. |
|
|
|
Raises: |
|
FileNotFoundError: If the LUT file specified by path_lut does not exist. |
|
""" |
|
with open(path_lut) as f: |
|
lut_raw = f.read().splitlines() |
|
size = round(len(lut_raw) ** (1 / 3)) |
|
row2val = lambda row: tuple([float(val) for val in row.split(" ")]) |
|
lut_table = [row2val(row) for row in lut_raw if is_3dlut_row(row.split(" "))] |
|
return ImageFilter.Color3DLUT(size, lut_table, num_channels) |
|
|
|
def apply_lut(img: Image, lut_path: str = "", lut: ImageFilter.Color3DLUT = None) -> Image: |
|
""" |
|
Apply a LUT to an image and return a PIL Image with the LUT applied. |
|
|
|
The function applies the LUT to the input image using the filter() method of the PIL Image class. |
|
|
|
Args: |
|
img: A PIL Image object to which the LUT should be applied. |
|
lut_path: A string representing the path to the LUT file (optional if lut argument is provided). |
|
lut: An instance of ImageFilter.Color3DLUT representing the LUT (optional if lut_path is provided). |
|
|
|
Returns: |
|
A PIL Image object with the LUT applied. |
|
|
|
Raises: |
|
ValueError: If both lut_path and lut arguments are not provided. |
|
""" |
|
if lut is None: |
|
if lut_path == "": |
|
raise ValueError("Either lut_path or lut argument must be provided.") |
|
lut = read_lut(lut_path) |
|
return img.filter(lut) |
|
|
|
def show_lut(lut_filename: str, lut_example_image: Image = default_lut_example_img) -> Image: |
|
if lut_filename is not None: |
|
try: |
|
lut_example_image = apply_lut(lut_example_image, lut_filename) |
|
except Exception as e: |
|
print(f"BAD LUT: Error applying LUT {str(e)}.") |
|
else: |
|
lut_example_image = open_image(default_lut_example_img) |
|
return lut_example_image |
|
|
|
|
|
|
|
def convert_rgb_to_rgba_safe(image: Image) -> Image: |
|
""" |
|
Converts an RGB image to RGBA by adding an alpha channel. |
|
Ensures that the original image remains unaltered. |
|
|
|
Parameters: |
|
image (PIL.Image.Image): The RGB image to convert. |
|
|
|
Returns: |
|
PIL.Image.Image: The converted RGBA image. |
|
""" |
|
if image.mode != 'RGB': |
|
if image.mode == 'RGBA': |
|
return image |
|
elif image.mode == 'P': |
|
|
|
image = image.convert('RGB') |
|
else: |
|
raise ValueError("Unsupported image mode for conversion to RGBA.") |
|
|
|
rgba_image = image.copy() |
|
|
|
alpha = Image.new('L', rgba_image.size, 255) |
|
rgba_image.putalpha(alpha) |
|
return rgba_image |
|
|
|
def apply_lut_to_image_path(lut_filename: str, image_path: str) -> tuple[Image, str]: |
|
""" |
|
Apply a LUT to an image and return the result. |
|
Supports ICO files by converting them to PNG with RGBA channels. |
|
|
|
Args: |
|
lut_filename: A string representing the path to the LUT file. |
|
image_path: A string representing the path to the input image. |
|
|
|
Returns: |
|
tuple: A tuple containing the PIL Image object with the LUT applied and the new image path as a string. |
|
""" |
|
if image_path is None: |
|
raise UserWarning("No image provided.") |
|
return None, None |
|
path = Path(image_path) |
|
img = open_image(image_path) |
|
if not ((path.suffix.lower() == '.png' and img.mode == 'RGBA')): |
|
if image_path.lower().endswith(('.jpg', '.jpeg')): |
|
img, new_image_path = convert_jpg_to_rgba(path) |
|
elif image_path.lower().endswith('.ico'): |
|
img, new_image_path = convert_to_rgba_png(image_path) |
|
elif image_path.lower().endswith(('.gif', '.webp')): |
|
img, new_image_path = convert_to_rgba_png(image_path) |
|
else: |
|
img, new_image_path = convert_to_rgba_png(image_path) |
|
delete_image(image_path) |
|
else: |
|
new_image_path = image_path |
|
if lut_filename is not None: |
|
try: |
|
img = apply_lut(img, lut_filename) |
|
except Exception as e: |
|
print(f"BAD LUT: Error applying LUT {str(e)}.") |
|
img.save(new_image_path, format='PNG') |
|
return img, str(new_image_path) |
|
|
|
|
|
|
|
|
|
|
|
def convert_jpg_to_rgba(input_path) -> tuple[Image, str]: |
|
""" |
|
Convert a JPG image to RGBA format and save it as a PNG. |
|
|
|
Args: |
|
input_path (str or Path): Path to the input JPG image file. |
|
|
|
Raises: |
|
FileNotFoundError: If the input file does not exist. |
|
ValueError: If the input file is not a JPG. |
|
OSError: If there's an error reading or writing the file. |
|
|
|
Returns: |
|
tuple: A tuple containing the RGBA image and the output path as a string. |
|
""" |
|
try: |
|
|
|
input_path = Path(input_path) |
|
output_path = input_path.with_suffix('.png') |
|
|
|
|
|
if not input_path.exists(): |
|
raise FileNotFoundError(f"The file {input_path} does not exist.") |
|
|
|
|
|
if input_path.suffix.lower() not in ('.jpg', '.jpeg'): |
|
print(f"Skipping conversion: {input_path} is not a JPG or JPEG file.") |
|
return Image.open(input_path), str(output_path) |
|
|
|
print(f"Converting to PNG: {input_path} is a JPG or JPEG file.") |
|
|
|
|
|
with Image.open(input_path) as img: |
|
|
|
rgba_img = img.convert('RGBA') |
|
|
|
|
|
output_path.parent.mkdir(parents=True, exist_ok=True) |
|
|
|
|
|
rgba_img.save(output_path) |
|
|
|
except FileNotFoundError as e: |
|
print(f"Error: {e}") |
|
except ValueError as e: |
|
print(f"Error: {e}") |
|
except OSError as e: |
|
print(f"Error: An OS error occurred while processing the image - {e}") |
|
except Exception as e: |
|
print(f"An unexpected error occurred: {e}") |
|
return rgba_img, str(output_path) |
|
|
|
|
|
def convert_to_rgba_png(file_path: str) -> tuple[Image, str]: |
|
""" |
|
Converts an image to RGBA PNG format and saves it with the same base name and a .png extension. |
|
Supports ICO files. |
|
|
|
Args: |
|
file_path (str): The path to the input image file. |
|
|
|
Returns: |
|
tuple: A tuple containing the RGBA image and the new file path as a string. |
|
""" |
|
new_file_path = None |
|
rgba_img = None |
|
img = None |
|
if file_path is None: |
|
raise UserWarning("No image provided.") |
|
return None, None |
|
try: |
|
file_path, is_dict = get_image_from_dict(file_path) |
|
img = open_image(file_path) |
|
print(f"Opened image: {file_path}\n") |
|
|
|
if file_path.lower().endswith(('.ico','.webp','.gif')): |
|
rgba_img = img.convert('RGBA') |
|
new_file_path = Path(file_path).with_suffix('.png') |
|
rgba_img.save(new_file_path, format='PNG') |
|
print(f"Converted ICO to PNG: {new_file_path}") |
|
else: |
|
rgba_img, new_file_path = convert_jpg_to_rgba(file_path) |
|
if rgba_img is None: |
|
rgba_img = convert_rgb_to_rgba_safe(img) |
|
new_file_path = Path(file_path).with_suffix('.png') |
|
rgba_img.save(new_file_path, format='PNG') |
|
print(f"Image saved as {new_file_path}") |
|
except ValueError as ve: |
|
print(f"ValueError: {ve}") |
|
except Exception as e: |
|
print(f"Error converting image: {e}") |
|
return rgba_img if rgba_img else img, str(new_file_path) |
|
|
|
def delete_image(file_path: str) -> None: |
|
""" |
|
Deletes the specified image file. |
|
|
|
Parameters: |
|
file_path (str): The path to the image file to delete. |
|
|
|
Raises: |
|
FileNotFoundError: If the file does not exist. |
|
Exception: If there is an error deleting the file. |
|
""" |
|
try: |
|
path = Path(file_path) |
|
path.unlink() |
|
print(f"Deleted original image: {file_path}") |
|
except FileNotFoundError: |
|
print(f"File not found: {file_path}") |
|
except Exception as e: |
|
print(f"Error deleting image: {e}") |
|
|
|
|
|
def resize_all_images_in_folder(target_width: int, output_folder: str = "resized", file_prefix: str = "resized_") -> tuple[int, int]: |
|
""" |
|
Resizes all images in the current folder to a specified width while maintaining aspect ratio. |
|
Creates a new folder for the resized images. |
|
|
|
Parameters: |
|
target_width (int): The desired width for all images |
|
output_folder (str): Name of the folder to store resized images (default: "resized") |
|
file_prefix (str): Prefix for resized files (default: "resized_") |
|
|
|
Returns: |
|
tuple[int, int]: (number of successfully resized images, number of failed attempts) |
|
|
|
Example Usage: |
|
successful_count, failed_count = resize_all_images_in_folder(target_width=800, output_folder="th", file_prefix="th_") |
|
""" |
|
|
|
valid_extensions = ('.jpg', '.jpeg', '.png', '.bmp', '.gif', '.tiff') |
|
|
|
output_path = Path(output_folder) |
|
output_path.mkdir(exist_ok=True) |
|
successful = 0 |
|
failed = 0 |
|
|
|
current_dir = Path.cwd() |
|
|
|
for file_path in current_dir.iterdir(): |
|
if file_path.is_file() and file_path.suffix.lower() in valid_extensions: |
|
try: |
|
|
|
with Image.open(file_path) as img: |
|
|
|
if img.mode != 'RGB': |
|
img = img.convert('RGB') |
|
|
|
original_width, original_height = img.size |
|
aspect_ratio = original_height / original_width |
|
target_height = int(target_width * aspect_ratio) |
|
|
|
resized_img = resize_image_with_aspect_ratio(img, target_width, target_height) |
|
|
|
output_filename = output_path / f"{file_prefix}{file_path.name}" |
|
|
|
resized_img.save(output_filename, quality=95) |
|
successful += 1 |
|
print(f"Successfully resized: {file_path.name}") |
|
except Exception as e: |
|
failed += 1 |
|
print(f"Failed to resize {file_path.name}: {str(e)}") |
|
|
|
print(f"\nResizing complete. Successfully processed: {successful}, Failed: {failed}") |
|
return successful, failed |
|
|
|
def get_image_quality(file_path): |
|
"""Determine quality based on image width.""" |
|
try: |
|
with Image.open(file_path) as img: |
|
width, _ = img.size |
|
if width < 1025: |
|
return 0 |
|
elif width < 1537: |
|
return 1 |
|
elif width < 2680: |
|
return 2 |
|
else: |
|
return 3 |
|
except Exception as e: |
|
print(f"Error opening {file_path}: {e}") |
|
return 0 |
|
|
|
def update_quality(): |
|
"""Update quality for each file in PRE_RENDERED_MAPS_JSON_LEVELS.""" |
|
possible_paths = ["./", "./images/prerendered/"] |
|
for key, value in PRE_RENDERED_MAPS_JSON_LEVELS.items(): |
|
file_path = value['file'] |
|
found = False |
|
|
|
for base_path in possible_paths: |
|
full_path = os.path.join(base_path, os.path.basename(file_path)) |
|
if os.path.exists(full_path): |
|
quality = get_image_quality(full_path) |
|
PRE_RENDERED_MAPS_JSON_LEVELS[key]['quality'] = quality |
|
print(f"Updated {key}: Quality set to {quality} (Width checked at {full_path})") |
|
found = True |
|
break |
|
if not found: |
|
print(f"Warning: File not found for {key} at any location. Keeping quality as {value['quality']}") |
|
|
|
def print_json(): |
|
"""Print the updated PRE_RENDERED_MAPS_JSON_LEVELS in a formatted way.""" |
|
print("\nUpdated PRE_RENDERED_MAPS_JSON_LEVELS = {") |
|
for key, value in PRE_RENDERED_MAPS_JSON_LEVELS.items(): |
|
print(f" '{key}': {{'file': '{value['file']}', 'thumbnail': '{value['thumbnail']}', 'quality': {value['quality']}}},") |
|
print("}") |
|
|