|
|
|
|
|
import torch |
|
import numpy as np |
|
from PIL import Image |
|
import open3d as o3d |
|
from transformers import DPTImageProcessor, DPTForDepthEstimation |
|
from pathlib import Path |
|
import logging |
|
logging.getLogger("transformers.modeling_utils").setLevel(logging.ERROR) |
|
from utils.image_utils import ( |
|
resize_image_with_aspect_ratio |
|
) |
|
|
|
|
|
image_processor = DPTImageProcessor.from_pretrained("Intel/dpt-large") |
|
depth_model = DPTForDepthEstimation.from_pretrained("Intel/dpt-large", ignore_mismatched_sizes=True) |
|
|
|
def estimate_depth(image): |
|
|
|
if image.mode != "RGB": |
|
image = image.convert("RGB") |
|
|
|
|
|
image_resized = image.resize( |
|
(image.width, image.height), |
|
Image.Resampling.LANCZOS |
|
) |
|
|
|
|
|
encoding = image_processor(image_resized, return_tensors="pt") |
|
|
|
|
|
with torch.no_grad(): |
|
outputs = depth_model(**encoding) |
|
predicted_depth = outputs.predicted_depth |
|
|
|
|
|
prediction = torch.nn.functional.interpolate( |
|
predicted_depth.unsqueeze(1), |
|
size=(image.height, image.width), |
|
mode="bicubic", |
|
align_corners=False, |
|
).squeeze() |
|
|
|
|
|
output = prediction.cpu().numpy() |
|
depth_min = output.min() |
|
depth_max = output.max() |
|
max_val = (2**8) - 1 |
|
|
|
|
|
depth_image = max_val * (output - depth_min) / (depth_max - depth_min) |
|
depth_image = depth_image.astype("uint8") |
|
|
|
depth_pil = Image.fromarray(depth_image) |
|
|
|
return depth_pil, output |
|
|
|
def create_3d_model(rgb_image, depth_array, voxel_size_factor=0.01): |
|
depth_o3d = o3d.geometry.Image(depth_array.astype(np.float32)) |
|
rgb_o3d = o3d.geometry.Image(np.array(rgb_image)) |
|
|
|
rgbd_image = o3d.geometry.RGBDImage.create_from_color_and_depth( |
|
rgb_o3d, |
|
depth_o3d, |
|
convert_rgb_to_intensity=False |
|
) |
|
|
|
|
|
camera_intrinsic = o3d.camera.PinholeCameraIntrinsic( |
|
rgb_image.width, |
|
rgb_image.height, |
|
fx=1.0, |
|
fy=1.0, |
|
cx=rgb_image.width / 2.0, |
|
cy=rgb_image.height / 2.0, |
|
) |
|
|
|
pcd = o3d.geometry.PointCloud.create_from_rgbd_image( |
|
rgbd_image, |
|
camera_intrinsic |
|
) |
|
|
|
|
|
voxel_size = max(pcd.get_max_bound() - pcd.get_min_bound()) * voxel_size_factor |
|
voxel_grid = o3d.geometry.VoxelGrid.create_from_point_cloud(pcd, voxel_size=voxel_size) |
|
|
|
|
|
temp_dir = Path.cwd() / "temp_models" |
|
temp_dir.mkdir(exist_ok=True) |
|
model_path = temp_dir / "model.ply" |
|
o3d.io.write_voxel_grid(str(model_path), voxel_grid) |
|
|
|
return str(model_path) |
|
|
|
def generate_depth_and_3d(input_image_path, voxel_size_factor): |
|
image = Image.open(input_image_path).convert("RGB") |
|
resized_image = resize_image_with_aspect_ratio(image, 2688, 1680) |
|
depth_image, depth_array = estimate_depth(resized_image) |
|
model_path = create_3d_model(resized_image, depth_array, voxel_size_factor=voxel_size_factor) |
|
return depth_image, model_path |
|
|
|
def generate_depth_button_click(depth_image_source, voxel_size_factor, input_image, output_image, overlay_image, bordered_image_output): |
|
if depth_image_source == "Input Image": |
|
image_path = input_image |
|
elif depth_image_source == "Output Image": |
|
image_path = output_image |
|
elif depth_image_source == "Image with Margins": |
|
image_path = bordered_image_output |
|
else: |
|
image_path = overlay_image |
|
|
|
return generate_depth_and_3d(image_path, voxel_size_factor) |
|
|
|
def create_3d_obj(rgb_image, raw_depth, image_path, depth=10, z_scale=200): |
|
""" |
|
Creates a 3D object from RGB and depth images. |
|
|
|
Args: |
|
rgb_image (np.ndarray): The RGB image as a NumPy array. |
|
raw_depth (np.ndarray): The raw depth data. |
|
image_path (Path): The path to the original image. |
|
depth (int, optional): Depth parameter for Poisson reconstruction. Defaults to 10. |
|
z_scale (float, optional): Scaling factor for the Z-axis. Defaults to 200. |
|
|
|
Returns: |
|
str: The file path to the saved GLTF model. |
|
""" |
|
|
|
depth_image = ((raw_depth - raw_depth.min()) / (raw_depth.max() - raw_depth.min()) * 255).astype("uint8") |
|
depth_o3d = o3d.geometry.Image(depth_image) |
|
image_o3d = o3d.geometry.Image(rgb_image) |
|
|
|
|
|
rgbd_image = o3d.geometry.RGBDImage.create_from_color_and_depth( |
|
image_o3d, depth_o3d, convert_rgb_to_intensity=False |
|
) |
|
|
|
height, width = depth_image.shape |
|
|
|
|
|
camera_intrinsic = o3d.camera.PinholeCameraIntrinsic( |
|
width, |
|
height, |
|
fx=z_scale, |
|
fy=z_scale, |
|
cx=width / 2.0, |
|
cy=height / 2.0, |
|
) |
|
|
|
|
|
pcd = o3d.geometry.PointCloud.create_from_rgbd_image(rgbd_image, camera_intrinsic) |
|
|
|
|
|
points = np.asarray(pcd.points) |
|
depth_scaled = ((raw_depth - raw_depth.min()) / (raw_depth.max() - raw_depth.min())) * (z_scale*100) |
|
z_values = depth_scaled.flatten()[:len(points)] |
|
points[:, 2] *= z_values |
|
pcd.points = o3d.utility.Vector3dVector(points) |
|
|
|
|
|
pcd.estimate_normals( |
|
search_param=o3d.geometry.KDTreeSearchParamHybrid(radius=0.01, max_nn=60) |
|
) |
|
pcd.orient_normals_towards_camera_location(camera_location=np.array([0.0, 0.0, 1.5 ])) |
|
|
|
|
|
pcd.transform([[1, 0, 0, 0], |
|
[0, -1, 0, 0], |
|
[0, 0, -1, 0], |
|
[0, 0, 0, 1]]) |
|
pcd.transform([[-1, 0, 0, 0], |
|
[0, 1, 0, 0], |
|
[0, 0, 1, 0], |
|
[0, 0, 0, 1]]) |
|
|
|
|
|
print(f"Running Poisson surface reconstruction with depth {depth}") |
|
mesh_raw, densities = o3d.geometry.TriangleMesh.create_from_point_cloud_poisson( |
|
pcd, depth=depth, width=0, scale=1.1, linear_fit=True |
|
) |
|
print(f"Raw mesh vertices: {len(mesh_raw.vertices)}, triangles: {len(mesh_raw.triangles)}") |
|
|
|
|
|
voxel_size = max(mesh_raw.get_max_bound() - mesh_raw.get_min_bound()) / (max(width, height) * 0.8) |
|
mesh = mesh_raw.simplify_vertex_clustering( |
|
voxel_size=voxel_size, |
|
contraction=o3d.geometry.SimplificationContraction.Average, |
|
) |
|
print(f"Simplified mesh vertices: {len(mesh.vertices)}, triangles: {len(mesh.triangles)}") |
|
|
|
|
|
bbox = pcd.get_axis_aligned_bounding_box() |
|
mesh_crop = mesh.crop(bbox) |
|
|
|
|
|
temp_dir = Path.cwd() / "models" |
|
temp_dir.mkdir(exist_ok=True) |
|
gltf_path = str(temp_dir / f"{image_path.stem}.gltf") |
|
o3d.io.write_triangle_mesh(gltf_path, mesh_crop, write_triangle_uvs=True) |
|
return gltf_path |
|
def depth_process_image(image_path, resized_width=800, z_scale=208): |
|
""" |
|
Processes the input image to generate a depth map and a 3D mesh reconstruction. |
|
|
|
Args: |
|
image_path (str): The file path to the input image. |
|
|
|
Returns: |
|
list: A list containing the depth image, 3D mesh reconstruction, and GLTF file path. |
|
""" |
|
image_path = Path(image_path) |
|
if not image_path.exists(): |
|
raise ValueError("Image file not found") |
|
|
|
|
|
image_raw = Image.open(image_path).convert("RGB") |
|
print(f"Original size: {image_raw.size}") |
|
resized_height = int(resized_width * image_raw.size[1] / image_raw.size[0]) |
|
image = image_raw.resize((resized_width, resized_height), Image.Resampling.LANCZOS) |
|
print(f"Resized size: {image.size}") |
|
|
|
|
|
encoding = image_processor(image, return_tensors="pt") |
|
|
|
|
|
with torch.no_grad(): |
|
outputs = depth_model(**encoding) |
|
predicted_depth = outputs.predicted_depth |
|
|
|
|
|
prediction = torch.nn.functional.interpolate( |
|
predicted_depth.unsqueeze(1), |
|
size=(image.height, image.width), |
|
mode="bicubic", |
|
align_corners=False, |
|
).squeeze() |
|
|
|
|
|
if torch.cuda.is_available(): |
|
prediction = prediction.numpy() |
|
else: |
|
prediction = prediction.cpu().numpy() |
|
depth_min, depth_max = prediction.min(), prediction.max() |
|
depth_image = ((prediction - depth_min) / (depth_max - depth_min) * 255).astype("uint8") |
|
|
|
try: |
|
gltf_path = create_3d_obj(np.array(image), prediction, image_path, depth=10, z_scale=z_scale) |
|
except Exception: |
|
gltf_path = create_3d_obj(np.array(image), prediction, image_path, depth=8, z_scale=z_scale) |
|
|
|
img = Image.fromarray(depth_image) |
|
|
|
if torch.cuda.is_available(): |
|
torch.cuda.empty_cache() |
|
torch.cuda.ipc_collect() |
|
return [img, gltf_path, gltf_path] |
|
|
|
|
|
|