Update app.py
Browse files
app.py
CHANGED
@@ -1,95 +1,101 @@
|
|
1 |
import gradio as gr
|
2 |
-
from
|
3 |
import os
|
4 |
import requests
|
5 |
import pandas as pd
|
6 |
import json
|
|
|
7 |
|
8 |
# Hugging Face ํ ํฐ ํ์ธ
|
9 |
-
|
10 |
|
11 |
-
if not
|
12 |
-
raise ValueError("
|
13 |
|
14 |
# ๋ชจ๋ธ ์ ๋ณด ํ์ธ
|
15 |
-
api = HfApi(token=
|
16 |
|
17 |
try:
|
18 |
-
client = InferenceClient("meta-llama/Meta-Llama-3-70B-Instruct", token=
|
19 |
except Exception as e:
|
20 |
-
print(f"
|
21 |
# ๋์ฒด ๋ชจ๋ธ์ ์ฌ์ฉํ๊ฑฐ๋ ์ค๋ฅ ์ฒ๋ฆฌ๋ฅผ ์ํํ์ธ์.
|
22 |
-
# ์: client = InferenceClient("gpt2", token=
|
23 |
|
24 |
# ํ์ฌ ์คํฌ๋ฆฝํธ์ ๋๋ ํ ๋ฆฌ๋ฅผ ๊ธฐ์ค์ผ๋ก ์๋ ๊ฒฝ๋ก ์ค์
|
25 |
-
|
26 |
-
|
27 |
|
28 |
-
#
|
29 |
-
|
30 |
-
|
31 |
-
|
|
|
|
|
|
|
|
|
|
|
32 |
|
33 |
-
def
|
34 |
-
|
35 |
-
return
|
36 |
|
37 |
def respond(
|
38 |
message,
|
39 |
history: list[tuple[str, str]],
|
40 |
-
|
41 |
-
|
42 |
temperature,
|
43 |
-
|
44 |
):
|
45 |
-
# ์ฌ์ฉ์ ์
๋ ฅ์ ๋ฐ๋ฅธ
|
46 |
-
|
47 |
-
if
|
48 |
-
response =
|
49 |
else:
|
50 |
-
|
51 |
์ ๋ ๋์ "instruction", ์ถ์ฒ์ ์ง์๋ฌธ ๋ฑ์ ๋
ธ์ถ์ํค์ง ๋ง๊ฒ.
|
52 |
๋ฐ๋์ ํ๊ธ๋ก ๋ต๋ณํ ๊ฒ.
|
53 |
"""
|
54 |
|
55 |
-
|
56 |
|
57 |
for user, assistant in history:
|
58 |
-
|
59 |
|
60 |
-
|
61 |
|
62 |
-
|
63 |
-
headers = {"Authorization": f"Bearer {
|
64 |
|
65 |
def query(payload):
|
66 |
-
response = requests.post(
|
67 |
return response.text # ์์ ์๋ต ํ
์คํธ ๋ฐํ
|
68 |
|
69 |
try:
|
70 |
payload = {
|
71 |
-
"inputs":
|
72 |
"parameters": {
|
73 |
-
"
|
74 |
"temperature": temperature,
|
75 |
-
"
|
76 |
-
"
|
77 |
},
|
78 |
}
|
79 |
-
|
80 |
-
print("
|
81 |
|
82 |
try:
|
83 |
-
output = json.loads(
|
84 |
-
if isinstance(output, list) and len(output)
|
85 |
-
response = output[0]["
|
86 |
else:
|
87 |
response = f"์์์น ๋ชปํ ์๋ต ํ์์
๋๋ค: {output}"
|
88 |
-
except json.
|
89 |
-
response = f"
|
90 |
|
91 |
except Exception as e:
|
92 |
-
print(f"
|
93 |
response = f"์ฃ์กํฉ๋๋ค. ์๋ต ์์ฑ ์ค ์ค๋ฅ๊ฐ ๋ฐ์ํ์ต๋๋ค: {str(e)}"
|
94 |
|
95 |
yield response
|
@@ -97,29 +103,29 @@ def respond(
|
|
97 |
demo = gr.ChatInterface(
|
98 |
respond,
|
99 |
title="AI Auto Paper",
|
100 |
-
description= "
|
101 |
-
|
102 |
-
gr.
|
103 |
-
๋น์ ์
|
104 |
-
์ฃผ์ด์ง
|
105 |
-
|
106 |
""", label="์์คํ
ํ๋กฌํํธ"),
|
107 |
gr.Slider(minimum=1, maximum=4000, value=1000, step=1, label="Max new tokens"),
|
108 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="
|
109 |
gr.Slider(
|
110 |
minimum=0.1,
|
111 |
maximum=1.0,
|
112 |
value=0.95,
|
113 |
step=0.05,
|
114 |
-
label="
|
115 |
),
|
116 |
],
|
117 |
examples=[
|
118 |
["ํ๊ธ๋ก ๋ต๋ณํ ๊ฒ"],
|
119 |
["๊ณ์ ์ด์ด์ ์์ฑํ๋ผ"],
|
120 |
],
|
121 |
-
|
122 |
)
|
123 |
|
124 |
-
if
|
125 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
from huggingface_hub import InferenceClient, HfApi
|
3 |
import os
|
4 |
import requests
|
5 |
import pandas as pd
|
6 |
import json
|
7 |
+
import pyarrow.parquet as pq
|
8 |
|
9 |
# Hugging Face ํ ํฐ ํ์ธ
|
10 |
+
hf_token = os.getenv("HF_TOKEN")
|
11 |
|
12 |
+
if not hf_token:
|
13 |
+
raise ValueError("HF_TOKEN ํ๊ฒฝ ๋ณ์๊ฐ ์ค์ ๋์ง ์์์ต๋๋ค.")
|
14 |
|
15 |
# ๋ชจ๋ธ ์ ๋ณด ํ์ธ
|
16 |
+
api = HfApi(token=hf_token)
|
17 |
|
18 |
try:
|
19 |
+
client = InferenceClient("meta-llama/Meta-Llama-3-70B-Instruct", token=hf_token)
|
20 |
except Exception as e:
|
21 |
+
print(f"Error initializing InferenceClient: {e}")
|
22 |
# ๋์ฒด ๋ชจ๋ธ์ ์ฌ์ฉํ๊ฑฐ๋ ์ค๋ฅ ์ฒ๋ฆฌ๋ฅผ ์ํํ์ธ์.
|
23 |
+
# ์: client = InferenceClient("gpt2", token=hf_token)
|
24 |
|
25 |
# ํ์ฌ ์คํฌ๋ฆฝํธ์ ๋๋ ํ ๋ฆฌ๋ฅผ ๊ธฐ์ค์ผ๋ก ์๋ ๊ฒฝ๋ก ์ค์
|
26 |
+
current_dir = os.path.dirname(os.path.abspath(__file__))
|
27 |
+
parquet_path = os.path.join(current_dir, 'train-00000-of-00005.parquet')
|
28 |
|
29 |
+
# Parquet ํ์ผ ๋ก๋
|
30 |
+
try:
|
31 |
+
df = pq.read_table(parquet_path).to_pandas()
|
32 |
+
print(f"Parquet ํ์ผ '{parquet_path}'์ ์ฑ๊ณต์ ์ผ๋ก ๋ก๋ํ์ต๋๋ค.")
|
33 |
+
print(f"๋ก๋๋ ๋ฐ์ดํฐ ํํ: {df.shape}")
|
34 |
+
print(f"์ปฌ๋ผ: {df.columns}")
|
35 |
+
except Exception as e:
|
36 |
+
print(f"Parquet ํ์ผ ๋ก๋ ์ค ์ค๋ฅ ๋ฐ์: {e}")
|
37 |
+
df = pd.DataFrame(columns=['question', 'answer']) # ๋น DataFrame ์์ฑ
|
38 |
|
39 |
+
def get_answer(question):
|
40 |
+
matching_answer = df[df['question'] == question]['answer'].values
|
41 |
+
return matching_answer[0] if len(matching_answer) > 0 else None
|
42 |
|
43 |
def respond(
|
44 |
message,
|
45 |
history: list[tuple[str, str]],
|
46 |
+
system_message,
|
47 |
+
max_tokens,
|
48 |
temperature,
|
49 |
+
top_p,
|
50 |
):
|
51 |
+
# ์ฌ์ฉ์ ์
๋ ฅ์ ๋ฐ๋ฅธ ๋ต๋ณ ์ ํ
|
52 |
+
answer = get_answer(message)
|
53 |
+
if answer:
|
54 |
+
response = answer # Parquet์์ ์ฐพ์ ๋ต๋ณ์ ์ง์ ๋ฐํ
|
55 |
else:
|
56 |
+
system_prefix = """
|
57 |
์ ๋ ๋์ "instruction", ์ถ์ฒ์ ์ง์๋ฌธ ๋ฑ์ ๋
ธ์ถ์ํค์ง ๋ง๊ฒ.
|
58 |
๋ฐ๋์ ํ๊ธ๋ก ๋ต๋ณํ ๊ฒ.
|
59 |
"""
|
60 |
|
61 |
+
full_prompt = f"{system_prefix} {system_message}\n\n"
|
62 |
|
63 |
for user, assistant in history:
|
64 |
+
full_prompt += f"Human: {user}\nAI: {assistant}\n"
|
65 |
|
66 |
+
full_prompt += f"Human: {message}\nAI:"
|
67 |
|
68 |
+
API_URL = "https://api-inference.huggingface.co/models/meta-llama/Meta-Llama-3-70B-Instruct"
|
69 |
+
headers = {"Authorization": f"Bearer {hf_token}"}
|
70 |
|
71 |
def query(payload):
|
72 |
+
response = requests.post(API_URL, headers=headers, json=payload)
|
73 |
return response.text # ์์ ์๋ต ํ
์คํธ ๋ฐํ
|
74 |
|
75 |
try:
|
76 |
payload = {
|
77 |
+
"inputs": full_prompt,
|
78 |
"parameters": {
|
79 |
+
"max_new_tokens": max_tokens,
|
80 |
"temperature": temperature,
|
81 |
+
"top_p": top_p,
|
82 |
+
"return_full_text": False
|
83 |
},
|
84 |
}
|
85 |
+
raw_response = query(payload)
|
86 |
+
print("Raw API response:", raw_response) # ๋๋ฒ๊น
์ ์ํด ์์ ์๋ต ์ถ๋ ฅ
|
87 |
|
88 |
try:
|
89 |
+
output = json.loads(raw_response)
|
90 |
+
if isinstance(output, list) and len(output) > 0 and "generated_text" in output[0]:
|
91 |
+
response = output[0]["generated_text"]
|
92 |
else:
|
93 |
response = f"์์์น ๋ชปํ ์๋ต ํ์์
๋๋ค: {output}"
|
94 |
+
except json.JSONDecodeError:
|
95 |
+
response = f"JSON ๋์ฝ๋ฉ ์ค๋ฅ. ์์ ์๋ต: {raw_response}"
|
96 |
|
97 |
except Exception as e:
|
98 |
+
print(f"Error during API request: {e}")
|
99 |
response = f"์ฃ์กํฉ๋๋ค. ์๋ต ์์ฑ ์ค ์ค๋ฅ๊ฐ ๋ฐ์ํ์ต๋๋ค: {str(e)}"
|
100 |
|
101 |
yield response
|
|
|
103 |
demo = gr.ChatInterface(
|
104 |
respond,
|
105 |
title="AI Auto Paper",
|
106 |
+
description= "ArXivGPT ์ปค๋ฎค๋ํฐ: https://open.kakao.com/o/gE6hK9Vf",
|
107 |
+
additional_inputs=[
|
108 |
+
gr.Textbox(value="""
|
109 |
+
๋น์ ์ ChatGPT ํ๋กฌํํธ ์ ๋ฌธ๊ฐ์
๋๋ค. ๋ฐ๋์ ํ๊ธ๋ก ๋ต๋ณํ์ธ์.
|
110 |
+
์ฃผ์ด์ง Parquet ํ์ผ์์ ์ฌ์ฉ์์ ์๊ตฌ์ ๋ง๋ ๋ต๋ณ์ ์ฐพ์ ์ ๊ณตํ๋ ๊ฒ์ด ์ฃผ์ ์ญํ ์
๋๋ค.
|
111 |
+
Parquet ํ์ผ์ ์๋ ๋ด์ฉ์ ๋ํด์๋ ์ ์ ํ ๋๋ต์ ์์ฑํด ์ฃผ์ธ์.
|
112 |
""", label="์์คํ
ํ๋กฌํํธ"),
|
113 |
gr.Slider(minimum=1, maximum=4000, value=1000, step=1, label="Max new tokens"),
|
114 |
+
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
115 |
gr.Slider(
|
116 |
minimum=0.1,
|
117 |
maximum=1.0,
|
118 |
value=0.95,
|
119 |
step=0.05,
|
120 |
+
label="Top-p (nucleus sampling)",
|
121 |
),
|
122 |
],
|
123 |
examples=[
|
124 |
["ํ๊ธ๋ก ๋ต๋ณํ ๊ฒ"],
|
125 |
["๊ณ์ ์ด์ด์ ์์ฑํ๋ผ"],
|
126 |
],
|
127 |
+
cache_examples=False,
|
128 |
)
|
129 |
|
130 |
+
if __name__ == "__main__":
|
131 |
demo.launch()
|