import streamlit as st from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain_community.document_loaders import PyPDFLoader from transformers import T5Tokenizer, T5ForConditionalGeneration from transformers import pipeline import torch import base64 import os from dotenv import load_dotenv load_dotenv() token = os.environ.get("HF_TOKEN") # Use the token for model loading or other tasks tokenizer = T5Tokenizer.from_pretrained("LaMini-Flan-T5-248M", token=token) checkpoint = "D:/project/LaMini-Flan-T5-248M" #model and tokenizer loading tokenizer = T5Tokenizer.from_pretrained(checkpoint) base_model = T5ForConditionalGeneration.from_pretrained(checkpoint, device_map='auto', torch_dtype=torch.float32, offload_folder='D:/project/offload') #file loader and preprocessing def file_preprocessing(file): loader = PyPDFLoader(file) pages = loader.load_and_split() text_splitter = RecursiveCharacterTextSplitter(chunk_size=200, chunk_overlap=50) texts = text_splitter.split_documents(pages) final_texts = "" for text in texts: print(text) final_texts = final_texts + text.page_content return final_texts #LLM pipeline def llm_pipeline(filepath): pipe_sum = pipeline( 'summarization', model = base_model, tokenizer = tokenizer, max_length = 500, min_length = 50) input_text = file_preprocessing(filepath) result = pipe_sum(input_text) result = result[0]['summary_text'] return result @st.cache_data #function to display the PDF of a given file def displayPDF(file): # Opening file from file path with open(file, "rb") as f: base64_pdf = base64.b64encode(f.read()).decode('utf-8') # Embedding PDF in HTML pdf_display = F'' # Displaying File st.markdown(pdf_display, unsafe_allow_html=True) #streamlit code st.set_page_config(layout="wide") def main(): st.title("Document Summarization App using Language Model") uploaded_file = st.file_uploader("Upload your PDF file", type=['pdf']) if uploaded_file is not None: if st.button("Summarize"): col1, col2 = st.columns(2) filepath = "data/"+uploaded_file.name with open(filepath, "wb") as temp_file: temp_file.write(uploaded_file.read()) with col1: st.info("Uploaded File") pdf_view = displayPDF(filepath) with col2: summary = llm_pipeline(filepath) st.info("Summarization Complete") st.success(summary) if __name__ == "__main__": main()