import gradio as gr
import pickle
# Load the trained spam classifier model
with open('spam_classifier_model.pkl', 'rb') as file:
loaded_model = pickle.load(file)
#a='
Spam
'
#b='Not Spam
'
# Prediction function
def predict_spam(email_text):
prediction = loaded_model.predict([email_text])
if prediction[0] == 1:
return (
f'Spam
'
)
else:
return (
f'Not Spam
'
)
# Define the Gradio interface
interface = gr.Interface(
theme=gr.themes.Citrus(
primary_hue="cyan",
neutral_hue="neutral"
),
fn=predict_spam,
inputs=gr.Textbox(
label="Email Content",
lines=3,
placeholder="Enter the email content here..."
),
outputs=gr.HTML(label="Output"),# Single output styled for size
title="Email Spam Classifier",
description="Enter an email's content to check if it's Spam or Not Spam."
)
# Launch the Gradio app
interface.launch()