Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,65 +1,13 @@
|
|
1 |
import gradio as gr
|
2 |
-
import
|
3 |
-
from transformers import GPT2TokenizerFast, ViTImageProcessor, VisionEncoderDecoderModel
|
4 |
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
model_checkpoint1 = "Stoneman/IG-caption-generator-vit-gpt2-last-block"
|
10 |
-
feature_extractor1 = ViTImageProcessor.from_pretrained(model_checkpoint1)
|
11 |
-
tokenizer1 = GPT2TokenizerFast.from_pretrained(model_checkpoint1)
|
12 |
-
model1 = VisionEncoderDecoderModel.from_pretrained(model_checkpoint1).to(device)
|
13 |
-
|
14 |
-
model_checkpoint2 = "Stoneman/IG-caption-generator-vit-gpt2-all"
|
15 |
-
model2 = VisionEncoderDecoderModel.from_pretrained(model_checkpoint2).to(device)
|
16 |
-
|
17 |
-
model_checkpoint3 = "Stoneman/IG-caption-generator-nlpconnect-last-block"
|
18 |
-
model3 = VisionEncoderDecoderModel.from_pretrained(model_checkpoint3).to(device)
|
19 |
-
|
20 |
-
model_checkpoint4 = "Stoneman/IG-caption-generator-nlpconnect-all"
|
21 |
-
model4 = VisionEncoderDecoderModel.from_pretrained(model_checkpoint4).to(device)
|
22 |
-
|
23 |
-
models = {
|
24 |
-
1: model1,
|
25 |
-
2: model2,
|
26 |
-
3: model3,
|
27 |
-
4: model4
|
28 |
-
}
|
29 |
-
|
30 |
-
# Prediction function
|
31 |
-
def predict(image, max_length=128):
|
32 |
-
captions = {}
|
33 |
-
|
34 |
-
image = image.convert('RGB')
|
35 |
-
pixel_values = feature_extractor1(images=image, return_tensors="pt").pixel_values.to(device)
|
36 |
-
for i in range(1,5):
|
37 |
-
caption_ids = models[i].generate(pixel_values, max_length=max_length)[0]
|
38 |
-
caption_text = tokenizer1.decode(caption_ids, skip_special_tokens=True)
|
39 |
-
captions[i] = caption_text
|
40 |
-
# Return a single string with all captions
|
41 |
-
return '\n\n'.join(f'Model {i}: {caption}' for i, caption in captions.items())
|
42 |
-
|
43 |
-
|
44 |
-
# Define input and output components
|
45 |
-
input_component = gr.components.Image(label="Upload any Image", type="pil")
|
46 |
-
output_component = gr.components.Textbox(label="Captions")
|
47 |
|
48 |
# Example images
|
49 |
examples = [f"example{i}.JPG" for i in range(1, 10)]
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
fn=predict,
|
56 |
-
description=description,
|
57 |
-
inputs=input_component,
|
58 |
-
theme="huggingface",
|
59 |
-
outputs=output_component,
|
60 |
-
examples=examples,
|
61 |
-
title=title,
|
62 |
-
)
|
63 |
-
|
64 |
-
# Launch interface
|
65 |
-
interface.launch(debug=True)
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import pipeline
|
|
|
3 |
|
4 |
+
pipe = pipeline(task="image-to-text",
|
5 |
+
model="Stoneman/IG-caption-generator-nlpconnect-last-block")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
# Example images
|
8 |
examples = [f"example{i}.JPG" for i in range(1, 10)]
|
9 |
+
gr.Interface.from_pipeline(pipe,
|
10 |
+
title="IG-caption-generator",
|
11 |
+
description="IG caption generator using ViT and GPT2.",
|
12 |
+
examples=examples
|
13 |
+
).launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|