Jiayu Shi
app.py
afbc5a8
raw
history blame
1.4 kB
import gradio as gr
import torch
from transformers import GPT2TokenizerFast, ViTImageProcessor, VisionEncoderDecoderModel
# Setup device, model, tokenizer, and feature extractor
device = 'cpu'
model_checkpoint = "Stoneman/IG-caption-generator-nlpconnect-all"
feature_extractor = ViTImageProcessor.from_pretrained(model_checkpoint)
tokenizer = GPT2TokenizerFast.from_pretrained(model_checkpoint)
model = VisionEncoderDecoderModel.from_pretrained(model_checkpoint).to(device)
# Prediction function
def predict(image, max_length=128):
image = image.convert('RGB')
pixel_values = feature_extractor(images=image, return_tensors="pt").pixel_values.to(device)
caption_ids = model.generate(pixel_values, max_length=max_length)[0]
caption_text = tokenizer.decode(caption_ids, skip_special_tokens=True)
return caption_text
# Define input and output components
input_component = gr.components.Image(label="Upload any Image", type="pil")
output_component = gr.components.Textbox(label="Captions")
# Example images
examples = [f"example{i}.JPG" for i in range(1, 10)]
# Interface
title = "IG-caption-generator"
description = "Made by: Jiayu Shi"
interface = gr.Interface(
fn=predict,
description=description,
inputs=input_component,
theme="huggingface",
outputs=output_component,
examples=examples,
title=title,
)
# Launch interface
interface.launch(debug=True)