Spaces:
Runtime error
Runtime error
import gradio as gr | |
import torch | |
from transformers import GPT2TokenizerFast, ViTImageProcessor, VisionEncoderDecoderModel | |
# Setup device, model, tokenizer, and feature extractor | |
device = 'cpu' | |
model_checkpoint = "Stoneman/IG-caption-generator-nlpconnect-all" | |
feature_extractor = ViTImageProcessor.from_pretrained(model_checkpoint) | |
tokenizer = GPT2TokenizerFast.from_pretrained(model_checkpoint) | |
model = VisionEncoderDecoderModel.from_pretrained(model_checkpoint).to(device) | |
# Prediction function | |
def predict(image, max_length=128): | |
image = image.convert('RGB') | |
pixel_values = feature_extractor(images=image, return_tensors="pt").pixel_values.to(device) | |
caption_ids = model.generate(pixel_values, max_length=max_length)[0] | |
caption_text = tokenizer.decode(caption_ids, skip_special_tokens=True) | |
return caption_text | |
# Define input and output components | |
input_component = gr.components.Image(label="Upload any Image", type="pil") | |
output_component = gr.components.Textbox(label="Captions") | |
# Example images | |
examples = [f"example{i}.JPG" for i in range(1, 10)] | |
# Interface | |
title = "IG-caption-generator" | |
description = "Made by: Jiayu Shi" | |
interface = gr.Interface( | |
fn=predict, | |
description=description, | |
inputs=input_component, | |
theme="huggingface", | |
outputs=output_component, | |
examples=examples, | |
title=title, | |
) | |
# Launch interface | |
interface.launch(debug=True) | |