Spaces:
Running
Running
Steven Zheng
commited on
Commit
·
ed6583e
1
Parent(s):
461492b
Add application file
Browse files
app.py
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from datasets import load_dataset, Dataset
|
2 |
+
from transformers import pipeline
|
3 |
+
import evaluate
|
4 |
+
import numpy as np
|
5 |
+
import gradio as gr
|
6 |
+
import json
|
7 |
+
from pathlib import Path
|
8 |
+
|
9 |
+
|
10 |
+
# Load WER metric
|
11 |
+
wer_metric = evaluate.load("wer")
|
12 |
+
|
13 |
+
model_name = {
|
14 |
+
"whisper-tiny": "openai/whisper-tiny.en",
|
15 |
+
"wav2vec2-large-960h": "facebook/wav2vec2-base-960h",
|
16 |
+
"distill-whisper-small": "distil-whisper/distil-small.en",
|
17 |
+
}
|
18 |
+
|
19 |
+
# open ds_data.json
|
20 |
+
with open("models/ds_data.json", "r") as f:
|
21 |
+
table_data = json.load(f)
|
22 |
+
|
23 |
+
def compute_wer_table(audio, text):
|
24 |
+
# Convert the wav into an array
|
25 |
+
audio_input = audio[1]
|
26 |
+
audio_input = audio_input.astype(np.float32)
|
27 |
+
audio_input = audio_input / 32767
|
28 |
+
|
29 |
+
trans = []
|
30 |
+
wer_scores = []
|
31 |
+
for model in model_name:
|
32 |
+
pipe = pipeline("automatic-speech-recognition", model=model_name[model])
|
33 |
+
transcription = pipe(audio_input)['text']
|
34 |
+
transcription = transcription.replace(",", "").replace(".", "")
|
35 |
+
trans.append(transcription)
|
36 |
+
wer = wer_metric.compute(predictions=[transcription.upper()], references=[text.upper()])
|
37 |
+
wer_scores.append(wer)
|
38 |
+
|
39 |
+
result = [[model, t, s] for model, t, s in zip(model_name.keys(), trans, wer_scores)]
|
40 |
+
|
41 |
+
return result
|
42 |
+
with gr.Blocks() as demo:
|
43 |
+
with gr.Tab("Docs"):
|
44 |
+
gr.Markdown((Path(__file__).parent / "demo.md").read_text())
|
45 |
+
with gr.Tab("Demo"):
|
46 |
+
gr.Interface(
|
47 |
+
fn=compute_wer_table,
|
48 |
+
inputs=[
|
49 |
+
gr.Audio(label="Input Audio"),
|
50 |
+
gr.Textbox(label="Reference Text")
|
51 |
+
],
|
52 |
+
outputs=gr.Dataframe(headers=["Model", "Transcription", "WER"], label="WER Results"),
|
53 |
+
examples=[[f"assets/output_audio_{i}.wav", table_data[i]['reference']] for i in range(100)],
|
54 |
+
title="ASR Model Evaluation",
|
55 |
+
description=(
|
56 |
+
"This application allows you to evaluate the performance of various Automatic Speech Recognition (ASR) models on "
|
57 |
+
"a given audio sample. Simply provide an audio file and the corresponding reference text, and the app will compute "
|
58 |
+
"the Word Error Rate (WER) for each model. The results will be presented in a table that includes the model name, "
|
59 |
+
"the transcribed text, and the calculated WER. "
|
60 |
+
"\n\n### Table of Results\n"
|
61 |
+
"The table below shows the transcriptions generated by different ASR models, along with their corresponding WER scores. "
|
62 |
+
"Lower WER scores indicate better performance."
|
63 |
+
"\n\n| Model | WER |\n"
|
64 |
+
"|--------------------------|--------------------------|\n"
|
65 |
+
"| [whisper-tiny](https://huggingface.co/openai/whisper-tiny.en) | 0.06175 |\n"
|
66 |
+
"| [wav2vec2-large-960h](https://huggingface.co/facebook/wav2vec2-large-960h) | 0.01617 |\n"
|
67 |
+
"| [distill-whisper-small](https://huggingface.co/distil-whisper/distil-small.en)| 0.04350 |\n"
|
68 |
+
"\n\n### Data Source\n"
|
69 |
+
"The data used in this demo is a subset of the [LibriSpeech](https://huggingface.co/datasets/openslr/librispeech_asr) dataset which contains the first 100 audio samples and their corresponding reference texts in the validation set."
|
70 |
+
),
|
71 |
+
)
|
72 |
+
|
73 |
+
demo.launch(share=True)
|