pokemon / app.py
StefanijaG's picture
Update app.py
cb08441 verified
raw
history blame
1.52 kB
import gradio as gr
import tensorflow as tf
import numpy as np
from PIL import Image
model_path = "transfer_learning_pk.keras"
model = tf.keras.models.load_model(model_path)
# Define the core prediction function
def predict_pokemon(image):
# Preprocess image
print(type(image))
image = Image.fromarray(image.astype('uint8')) # Convert numpy array to PIL image
image = image.resize((150, 150)) #resize the image to 28x28 and converts it to gray scale
image = np.array(image)
image = np.expand_dims(image, axis=0) # same as image[None, ...]
# Predict
prediction = model.predict(image)
# No need to apply sigmoid, as the output layer already uses softmax
# Convert the probabilities to rounded values
prediction = np.round(prediction, 2)
# Separate the probabilities for each class
p_gyarados = prediction[0][0] # Probability for class 'articuno'
p_metapod = prediction[0][1] # Probability for class 'moltres'
p_ponyta = prediction[0][2] # Probability for class 'zapdos'
return {'gyarados': p_gyarados, 'metapod': p_metapod, 'ponyta': p_ponyta}
# Create the Gradio interface
input_image = gr.Image()
iface = gr.Interface(
fn=predict_pokemon,
inputs=input_image,
outputs=gr.Label(),
examples=["img/gyarados1.jpg", "img/gyarados2.jpg", "img/gyarados3.jpg", "img/metapod1.jpg", "img/metapod2.jpg", "img/metapod3.jpg", "img/ponyta1.jpg", "img/ponyta2.jpg", "img/ponyta3.jpg"],
description="Pokemon")
iface.launch()