Voice / app.py
Staticaliza's picture
Update app.py
23dc4e5 verified
raw
history blame
20 kB
import gradio as gr
import numpy as np
import soundfile as sf
import spaces
import torch
import torchaudio
import librosa
import yaml
import tempfile
import os
from huggingface_hub import hf_hub_download
from transformers import AutoFeatureExtractor, WhisperModel
from torch.nn.utils import parametrizations
from modules.commons import build_model, load_checkpoint, recursive_munch
from modules.campplus.DTDNN import CAMPPlus
from modules.bigvgan import bigvgan
from modules.rmvpe import RMVPE
from modules.audio import mel_spectrogram
# ----------------------------
# Optimization Settings
# ----------------------------
# Set the number of threads to the number of CPU cores
torch.set_num_threads(os.cpu_count())
# Enable optimized backends
torch.backends.openmp.enabled = True
torch.backends.mkldnn.enabled = True
torch.backends.cudnn.enabled = False
torch.backends.cuda.enabled = False
torch.set_grad_enabled(False)
# Force CPU usage
device = torch.device("cpu")
print(f"[DEVICE] | Using device: {device}")
# ----------------------------
# Load Models and Configuration
# ----------------------------
def load_custom_model_from_hf(repo_id, model_filename="pytorch_model.bin", config_filename="config.yml"):
os.makedirs("./checkpoints", exist_ok=True)
model_path = hf_hub_download(repo_id=repo_id, filename=model_filename, cache_dir="./checkpoints")
if config_filename is None:
return model_path
config_path = hf_hub_download(repo_id=repo_id, filename=config_filename, cache_dir="./checkpoints")
return model_path, config_path
# Load DiT model
dit_checkpoint_path, dit_config_path = load_custom_model_from_hf(
"Plachta/Seed-VC",
"DiT_seed_v2_uvit_whisper_small_wavenet_bigvgan_pruned.pth",
"config_dit_mel_seed_uvit_whisper_small_wavenet.yml"
)
config = yaml.safe_load(open(dit_config_path, 'r'))
model_params = recursive_munch(config['model_params'])
model = build_model(model_params, stage='DiT')
# Debug: Print model keys to identify correct key
print(f"[INFO] | Model keys: {model.keys()}")
hop_length = config['preprocess_params']['spect_params']['hop_length']
sr = config['preprocess_params']['sr']
# Load DiT checkpoints
model, _, _, _ = load_checkpoint(model, None, dit_checkpoint_path, load_only_params=True, ignore_modules=[], is_distributed=False)
for key in model:
model[key].eval()
model[key].to(device)
print("[INFO] | DiT model loaded and set to eval mode.")
model.cfm.estimator.setup_caches(max_batch_size=1, max_seq_length=8192)
# Ensure 'CAMPPlus' is correctly imported and defined
try:
campplus_model = CAMPPlus(feat_dim=80, embedding_size=192)
print("[INFO] | CAMPPlus model instantiated.")
except NameError:
print("[ERROR] | CAMPPlus is not defined. Please check the import path and ensure CAMPPlus is correctly defined.")
raise
# Set weights_only=True for security
campplus_ckpt_path = load_custom_model_from_hf("funasr/campplus", "campplus_cn_common.bin", config_filename=None)
campplus_state = torch.load(campplus_ckpt_path, map_location="cpu", weights_only=True)
campplus_model.load_state_dict(campplus_state)
campplus_model.eval()
campplus_model.to(device)
print("[INFO] | CAMPPlus model loaded, set to eval mode, and moved to CPU.")
# Load BigVGAN model
bigvgan_model = bigvgan.BigVGAN.from_pretrained('nvidia/bigvgan_v2_22khz_80band_256x', use_cuda_kernel=False)
bigvgan_model.remove_weight_norm()
bigvgan_model = bigvgan_model.eval().to(device)
print("[INFO] | BigVGAN model loaded, weight norm removed, set to eval mode, and moved to CPU.")
# Load FAcodec model
ckpt_path, config_path = load_custom_model_from_hf("Plachta/FAcodec", 'pytorch_model.bin', 'config.yml')
codec_config = yaml.safe_load(open(config_path))
codec_model_params = recursive_munch(codec_config['model_params'])
codec_encoder = build_model(codec_model_params, stage="codec")
ckpt_params = torch.load(ckpt_path, map_location="cpu", weights_only=True)
for key in codec_encoder:
codec_encoder[key].load_state_dict(ckpt_params[key], strict=False)
codec_encoder = {k: v.eval().to(device) for k, v in codec_encoder.items()}
print("[INFO] | FAcodec model loaded, set to eval mode, and moved to CPU.")
# Load Whisper model with float32 and compatible size
whisper_name = model_params.speech_tokenizer.whisper_name if hasattr(model_params.speech_tokenizer, 'whisper_name') else "openai/whisper-small"
whisper_model = WhisperModel.from_pretrained(whisper_name, torch_dtype=torch.float32).to(device)
del whisper_model.decoder # Remove decoder as it's not used
whisper_feature_extractor = AutoFeatureExtractor.from_pretrained(whisper_name)
print(f"[INFO] | Whisper model '{whisper_name}' loaded with dtype {whisper_model.dtype} and moved to CPU.")
# Generate mel spectrograms with optimized parameters
mel_fn_args = {
"n_fft": 1024,
"win_size": 1024,
"hop_size": 256,
"num_mels": 80,
"sampling_rate": sr,
"fmin": 0,
"fmax": None,
"center": False
}
to_mel = lambda x: mel_spectrogram(x, **mel_fn_args)
# Load F0 conditioned model
dit_checkpoint_path_f0, dit_config_path_f0 = load_custom_model_from_hf(
"Plachta/Seed-VC",
"DiT_seed_v2_uvit_whisper_base_f0_44k_bigvgan_pruned_ft_ema.pth",
"config_dit_mel_seed_uvit_whisper_base_f0_44k.yml"
)
config_f0 = yaml.safe_load(open(dit_config_path_f0, 'r'))
model_params_f0 = recursive_munch(config_f0['model_params'])
model_f0 = build_model(model_params_f0, stage='DiT')
hop_length_f0 = config_f0['preprocess_params']['spect_params']['hop_length']
sr_f0 = config_f0['preprocess_params']['sr']
# Load F0 model checkpoints
model_f0, _, _, _ = load_checkpoint(model_f0, None, dit_checkpoint_path_f0, load_only_params=True, ignore_modules=[], is_distributed=False)
for key in model_f0:
model_f0[key].eval()
model_f0[key].to(device)
print("[INFO] | F0 conditioned DiT model loaded and set to eval mode.")
model_f0.cfm.estimator.setup_caches(max_batch_size=1, max_seq_length=8192)
# Load F0 extractor
model_path = load_custom_model_from_hf("lj1995/VoiceConversionWebUI", "rmvpe.pt", None)
rmvpe = RMVPE(model_path, is_half=False, device=device)
print("[INFO] | RMVPE model loaded and moved to CPU.")
mel_fn_args_f0 = {
"n_fft": config_f0['preprocess_params']['spect_params']['n_fft'],
"win_size": config_f0['preprocess_params']['spect_params']['win_length'],
"hop_size": config_f0['preprocess_params']['spect_params']['hop_length'],
"num_mels": 80, # Ensure this matches the primary model
"sampling_rate": sr_f0,
"fmin": 0,
"fmax": None,
"center": False
}
to_mel_f0 = lambda x: mel_spectrogram(x, **mel_fn_args_f0)
# Load BigVGAN 44kHz model
bigvgan_44k_model = bigvgan.BigVGAN.from_pretrained('nvidia/bigvgan_v2_44khz_128band_512x', use_cuda_kernel=False)
bigvgan_44k_model.remove_weight_norm()
bigvgan_44k_model = bigvgan_44k_model.eval().to(device)
print("[INFO] | BigVGAN 44kHz model loaded, weight norm removed, set to eval mode, and moved to CPU.")
# ----------------------------
# Helper Functions
# ----------------------------
def adjust_f0_semitones(f0_sequence, n_semitones):
factor = 2 ** (n_semitones / 12)
return f0_sequence * factor
def crossfade(chunk1, chunk2, overlap):
fade_out = np.cos(np.linspace(0, np.pi / 2, overlap)) ** 2
fade_in = np.cos(np.linspace(np.pi / 2, 0, overlap)) ** 2
chunk2[:overlap] = chunk2[:overlap] * fade_in + chunk1[-overlap:] * fade_out
return chunk2
# ----------------------------
# Voice Conversion Function
# ----------------------------
@torch.no_grad()
@torch.inference_mode()
def voice_conversion(source, target, diffusion_steps, length_adjust, inference_cfg_rate, f0_condition, auto_f0_adjust, pitch_shift):
print("[INFO] | Voice conversion started.")
inference_module = model if not f0_condition else model_f0
mel_fn = to_mel if not f0_condition else to_mel_f0
bigvgan_fn = bigvgan_model if not f0_condition else bigvgan_44k_model
sr_current = 22050 if not f0_condition else 44100
hop_length_current = 256 if not f0_condition else 512
max_context_window = sr_current // hop_length_current * 30
overlap_wave_len = 16 * hop_length_current
bitrate = "320k"
# Load audio using librosa
print("[INFO] | Loading source and reference audio.")
source_audio, _ = librosa.load(source, sr=sr_current)
ref_audio, _ = librosa.load(target, sr=sr_current)
# Clip reference audio to 25 seconds
ref_audio = ref_audio[:sr_current * 25]
print(f"[INFO] | Source audio length: {len(source_audio)/sr_current:.2f}s, Reference audio length: {len(ref_audio)/sr_current:.2f}s")
# Convert audio to tensors
source_audio_tensor = torch.tensor(source_audio).unsqueeze(0).float().to(device)
ref_audio_tensor = torch.tensor(ref_audio).unsqueeze(0).float().to(device)
# Resample to 16kHz
ref_waves_16k = torchaudio.functional.resample(ref_audio_tensor, sr_current, 16000)
converted_waves_16k = torchaudio.functional.resample(source_audio_tensor, sr_current, 16000)
# Generate Whisper features
print("[INFO] | Generating Whisper features for source audio.")
if converted_waves_16k.size(-1) <= 16000 * 30:
alt_inputs = whisper_feature_extractor(
[converted_waves_16k.squeeze(0).cpu().numpy()],
return_tensors="pt",
return_attention_mask=True,
sampling_rate=16000
)
alt_input_features = whisper_model._mask_input_features(
alt_inputs.input_features, attention_mask=alt_inputs.attention_mask
).to(device)
alt_outputs = whisper_model.encoder(
alt_input_features.to(torch.float32),
head_mask=None,
output_attentions=False,
output_hidden_states=False,
return_dict=True
)
S_alt = alt_outputs.last_hidden_state.to(torch.float32)
S_alt = S_alt[:, :converted_waves_16k.size(-1) // 320 + 1]
print(f"[INFO] | S_alt shape: {S_alt.shape}")
else:
# Process in chunks
print("[INFO] | Processing source audio in chunks.")
overlapping_time = 5 # seconds
chunk_size = 16000 * 30 # 30 seconds
overlap_size = 16000 * overlapping_time
S_alt_list = []
buffer = None
traversed_time = 0
total_length = converted_waves_16k.size(-1)
while traversed_time < total_length:
if buffer is None:
chunk = converted_waves_16k[:, traversed_time:traversed_time + chunk_size]
else:
chunk = torch.cat([
buffer,
converted_waves_16k[:, traversed_time:traversed_time + chunk_size - overlap_size]
], dim=-1)
alt_inputs = whisper_feature_extractor(
[chunk.squeeze(0).cpu().numpy()],
return_tensors="pt",
return_attention_mask=True,
sampling_rate=16000
)
alt_input_features = whisper_model._mask_input_features(
alt_inputs.input_features, attention_mask=alt_inputs.attention_mask
).to(device)
alt_outputs = whisper_model.encoder(
alt_input_features.to(torch.float32),
head_mask=None,
output_attentions=False,
output_hidden_states=False,
return_dict=True
)
S_chunk = alt_outputs.last_hidden_state.to(torch.float32)
S_chunk = S_chunk[:, :chunk.size(-1) // 320 + 1]
print(f"[INFO] | Processed chunk with S_chunk shape: {S_chunk.shape}")
if traversed_time == 0:
S_alt_list.append(S_chunk)
else:
skip_frames = 50 * overlapping_time
S_alt_list.append(S_chunk[:, skip_frames:])
buffer = chunk[:, -overlap_size:]
traversed_time += chunk_size - overlap_size
S_alt = torch.cat(S_alt_list, dim=1)
print(f"[INFO] | Final S_alt shape after chunk processing: {S_alt.shape}")
# Original Whisper features
print("[INFO] | Generating Whisper features for reference audio.")
ori_waves_16k = torchaudio.functional.resample(ref_audio_tensor, sr_current, 16000)
ori_inputs = whisper_feature_extractor(
[ori_waves_16k.squeeze(0).cpu().numpy()],
return_tensors="pt",
return_attention_mask=True,
sampling_rate=16000
)
ori_input_features = whisper_model._mask_input_features(
ori_inputs.input_features, attention_mask=ori_inputs.attention_mask
).to(device)
ori_outputs = whisper_model.encoder(
ori_input_features.to(torch.float32),
head_mask=None,
output_attentions=False,
output_hidden_states=False,
return_dict=True
)
S_ori = ori_outputs.last_hidden_state.to(torch.float32)
S_ori = S_ori[:, :ori_waves_16k.size(-1) // 320 + 1]
print(f"[INFO] | S_ori shape: {S_ori.shape}")
# Generate mel spectrograms
print("[INFO] | Generating mel spectrograms.")
mel = mel_fn(source_audio_tensor.float())
mel2 = mel_fn(ref_audio_tensor.float())
print(f"[INFO] | Mel spectrogram shapes: mel={mel.shape}, mel2={mel2.shape}")
# Length adjustment
target_lengths = torch.LongTensor([int(mel.size(2) * length_adjust)]).to(mel.device)
target2_lengths = torch.LongTensor([mel2.size(2)]).to(mel2.device)
print(f"[INFO] | Target lengths: {target_lengths.item()}, {target2_lengths.item()}")
# Extract style features
print("[INFO] | Extracting style features from reference audio.")
feat2 = torchaudio.compliance.kaldi.fbank(
ref_waves_16k,
num_mel_bins=80,
dither=0,
sample_frequency=16000
)
feat2 = feat2 - feat2.mean(dim=0, keepdim=True)
style2 = campplus_model(feat2.unsqueeze(0))
print(f"[INFO] | Style2 shape: {style2.shape}")
# F0 Conditioning
if f0_condition:
print("[INFO] | Performing F0 conditioning.")
F0_ori = rmvpe.infer_from_audio(ref_waves_16k[0], thred=0.5)
F0_alt = rmvpe.infer_from_audio(converted_waves_16k[0], thred=0.5)
F0_ori = torch.from_numpy(F0_ori).to(device)[None].float()
F0_alt = torch.from_numpy(F0_alt).to(device)[None].float()
voiced_F0_ori = F0_ori[F0_ori > 1]
voiced_F0_alt = F0_alt[F0_alt > 1]
log_f0_alt = torch.log(F0_alt + 1e-5)
voiced_log_f0_ori = torch.log(voiced_F0_ori + 1e-5)
voiced_log_f0_alt = torch.log(voiced_F0_alt + 1e-5)
median_log_f0_ori = torch.median(voiced_log_f0_ori)
median_log_f0_alt = torch.median(voiced_log_f0_alt)
# Shift F0 levels
shifted_log_f0_alt = log_f0_alt.clone()
if auto_f0_adjust:
shifted_log_f0_alt[F0_alt > 1] = (
log_f0_alt[F0_alt > 1] - median_log_f0_alt + median_log_f0_ori
)
shifted_f0_alt = torch.exp(shifted_log_f0_alt)
if pitch_shift != 0:
shifted_f0_alt[F0_alt > 1] = adjust_f0_semitones(shifted_f0_alt[F0_alt > 1], pitch_shift)
print("[INFO] | F0 conditioning completed.")
else:
F0_ori = None
F0_alt = None
shifted_f0_alt = None
print("[INFO] | F0 conditioning not applied.")
# Length Regulation
print("[INFO] | Applying length regulation.")
cond, _, _, _, _ = inference_module.length_regulator(S_alt, ylens=target_lengths, n_quantizers=3, f0=shifted_f0_alt)
prompt_condition, _, _, _, _ = inference_module.length_regulator(S_ori, ylens=target2_lengths, n_quantizers=3, f0=F0_ori)
print(f"[INFO] | Cond shape: {cond.shape}, Prompt condition shape: {prompt_condition.shape}")
# Initialize variables for audio generation
max_source_window = max_context_window - mel2.size(2)
processed_frames = 0
generated_wave_chunks = []
print("[INFO] | Starting inference and audio generation.")
while processed_frames < cond.size(1):
chunk_cond = cond[:, processed_frames:processed_frames + max_source_window]
is_last_chunk = processed_frames + max_source_window >= cond.size(1)
cat_condition = torch.cat([prompt_condition, chunk_cond], dim=1)
# Perform inference
vc_target = inference_module.cfm.inference(
cat_condition,
torch.LongTensor([cat_condition.size(1)]).to(mel2.device),
mel2,
style2,
None,
diffusion_steps,
inference_cfg_rate=inference_cfg_rate
)
vc_target = vc_target[:, :, mel2.size(2):]
print(f"[INFO] | vc_target shape: {vc_target.shape}")
# Generate waveform using BigVGAN
vc_wave = bigvgan_fn(vc_target.float())[0]
print(f"[INFO] | vc_wave shape: {vc_wave.shape}")
# Handle the generated waveform
output_wave = vc_wave[0].cpu().numpy()
generated_wave_chunks.append(output_wave)
# Fix: Ensure processed_frames increments correctly to avoid infinite loop
processed_frames += vc_target.size(2) # Changed from 'vc_target.size(2) - 16' to 'vc_target.size(2)'
print(f"[INFO] | Processed frames updated to: {processed_frames}")
# Concatenate all generated wave chunks
final_audio = np.concatenate(generated_wave_chunks).astype(np.float32)
# Normalize the audio to ensure it's within [-1.0, 1.0]
max_val = np.max(np.abs(final_audio))
if max_val > 1.0:
final_audio = final_audio / max_val
print("[INFO] | Final audio normalized.")
# Save the audio to a temporary WAV file
print("[INFO] | Saving final audio to a temporary WAV file.")
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as tmp_file:
sf.write(tmp_file.name, final_audio, sr_current, format='WAV')
temp_file_path = tmp_file.name
print(f"[INFO] | Final audio saved to {temp_file_path}")
return temp_file_path
# ----------------------------
# Bypass GPU Initialization Error (KEEP THIS FUNCTION AND NEVER DELETE, OTHERWISE IT WILL ERROR DUE TO NOT AT LEAST ONE FUNCTION HAVING USE OF GPU)
# ----------------------------
@spaces.GPU(duration=15)
def gpu():
return
# ----------------------------
# Gradio Interface
# ----------------------------
description = (
"🪄 **Voice Conversion Tool**\n\n"
"Upload your **Source Audio** and **Reference Audio** files to perform voice conversion. "
"Adjust the sliders and checkboxes to customize the conversion process."
)
inputs = [
gr.Audio(type="filepath", label="Source Audio"),
gr.Audio(type="filepath", label="Reference Audio"),
gr.Slider(minimum=1, maximum=100, value=25, step=1, label="Diffusion Steps", info="Default is 25. Use 50-100 for best quality."),
gr.Slider(minimum=0.5, maximum=2.0, step=0.1, value=1.0, label="Length Adjustment", info="<1.0 to speed up speech, >1.0 to slow down speech."),
gr.Slider(minimum=0.0, maximum=1.0, step=0.1, value=0.7, label="Inference CFG Rate", info="Has a subtle influence."),
gr.Checkbox(label="Use F0 Conditioned Model", value=False, info="Must be enabled for singing voice conversion."),
gr.Checkbox(label="Auto F0 Adjustment", value=True, info="Roughly adjusts F0 to match target voice. Only works when 'Use F0 Conditioned Model' is enabled."),
gr.Slider(label='Pitch Shift (semitones)', minimum=-12, maximum=12, step=1, value=0, info="Pitch shift in semitones. Only works when 'Use F0 Conditioned Model' is enabled."),
]
# Set outputs to a single gr.Audio component with type="filepath"
outputs = gr.Audio(label="Full Output Audio", type="filepath")
gr.Interface(
fn=voice_conversion,
description=description,
inputs=inputs,
outputs=outputs,
title="Seed Voice Conversion",
cache_examples=False,
allow_flagging="never"
).launch(share=True)