Spaces:
Running
on
Zero
Running
on
Zero
Staticaliza
commited on
Upload resample.py
Browse files- modules/bigvgan/resample.py +58 -0
modules/bigvgan/resample.py
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Adapted from https://github.com/junjun3518/alias-free-torch under the Apache License 2.0
|
2 |
+
# LICENSE is in incl_licenses directory.
|
3 |
+
|
4 |
+
import torch.nn as nn
|
5 |
+
from torch.nn import functional as F
|
6 |
+
from .filter import LowPassFilter1d
|
7 |
+
from .filter import kaiser_sinc_filter1d
|
8 |
+
|
9 |
+
|
10 |
+
class UpSample1d(nn.Module):
|
11 |
+
def __init__(self, ratio=2, kernel_size=None):
|
12 |
+
super().__init__()
|
13 |
+
self.ratio = ratio
|
14 |
+
self.kernel_size = (
|
15 |
+
int(6 * ratio // 2) * 2 if kernel_size is None else kernel_size
|
16 |
+
)
|
17 |
+
self.stride = ratio
|
18 |
+
self.pad = self.kernel_size // ratio - 1
|
19 |
+
self.pad_left = self.pad * self.stride + (self.kernel_size - self.stride) // 2
|
20 |
+
self.pad_right = (
|
21 |
+
self.pad * self.stride + (self.kernel_size - self.stride + 1) // 2
|
22 |
+
)
|
23 |
+
filter = kaiser_sinc_filter1d(
|
24 |
+
cutoff=0.5 / ratio, half_width=0.6 / ratio, kernel_size=self.kernel_size
|
25 |
+
)
|
26 |
+
self.register_buffer("filter", filter)
|
27 |
+
|
28 |
+
# x: [B, C, T]
|
29 |
+
def forward(self, x):
|
30 |
+
_, C, _ = x.shape
|
31 |
+
|
32 |
+
x = F.pad(x, (self.pad, self.pad), mode="replicate")
|
33 |
+
x = self.ratio * F.conv_transpose1d(
|
34 |
+
x, self.filter.expand(C, -1, -1), stride=self.stride, groups=C
|
35 |
+
)
|
36 |
+
x = x[..., self.pad_left : -self.pad_right]
|
37 |
+
|
38 |
+
return x
|
39 |
+
|
40 |
+
|
41 |
+
class DownSample1d(nn.Module):
|
42 |
+
def __init__(self, ratio=2, kernel_size=None):
|
43 |
+
super().__init__()
|
44 |
+
self.ratio = ratio
|
45 |
+
self.kernel_size = (
|
46 |
+
int(6 * ratio // 2) * 2 if kernel_size is None else kernel_size
|
47 |
+
)
|
48 |
+
self.lowpass = LowPassFilter1d(
|
49 |
+
cutoff=0.5 / ratio,
|
50 |
+
half_width=0.6 / ratio,
|
51 |
+
stride=ratio,
|
52 |
+
kernel_size=self.kernel_size,
|
53 |
+
)
|
54 |
+
|
55 |
+
def forward(self, x):
|
56 |
+
xx = self.lowpass(x)
|
57 |
+
|
58 |
+
return xx
|