Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (c) Meta Platforms, Inc. and affiliates. | |
# All rights reserved. | |
# This source code is licensed under the license found in the | |
# LICENSE file in the root directory of this source tree. | |
from dataclasses import dataclass | |
from typing import Optional | |
import torch | |
import torch.nn as nn | |
from torch import Tensor | |
from torch.nn import functional as F | |
def find_multiple(n: int, k: int) -> int: | |
if n % k == 0: | |
return n | |
return n + k - (n % k) | |
class AdaptiveLayerNorm(nn.Module): | |
r"""Adaptive Layer Normalization""" | |
def __init__(self, d_model, norm) -> None: | |
super(AdaptiveLayerNorm, self).__init__() | |
self.project_layer = nn.Linear(d_model, 2 * d_model) | |
self.norm = norm | |
self.d_model = d_model | |
self.eps = self.norm.eps | |
def forward(self, input: Tensor, embedding: Tensor = None) -> Tensor: | |
if embedding is None: | |
return self.norm(input) | |
weight, bias = torch.split( | |
self.project_layer(embedding), | |
split_size_or_sections=self.d_model, | |
dim=-1, | |
) | |
return weight * self.norm(input) + bias | |
class ModelArgs: | |
block_size: int = 2048 | |
vocab_size: int = 32000 | |
n_layer: int = 32 | |
n_head: int = 32 | |
dim: int = 4096 | |
intermediate_size: int = None | |
n_local_heads: int = -1 | |
head_dim: int = 64 | |
rope_base: float = 10000 | |
norm_eps: float = 1e-5 | |
has_cross_attention: bool = False | |
context_dim: int = 0 | |
uvit_skip_connection: bool = False | |
def __post_init__(self): | |
if self.n_local_heads == -1: | |
self.n_local_heads = self.n_head | |
if self.intermediate_size is None: | |
hidden_dim = 4 * self.dim | |
n_hidden = int(2 * hidden_dim / 3) | |
self.intermediate_size = find_multiple(n_hidden, 256) | |
# self.head_dim = self.dim // self.n_head | |
def from_name(cls, name: str): | |
if name in transformer_configs: | |
return cls(**transformer_configs[name]) | |
# fuzzy search | |
config = [config for config in transformer_configs if config.lower() in str(name).lower()] | |
# We may have two or more configs matched (e.g. "7B" and "Mistral-7B"). Find the best config match, | |
# take longer name (as it have more symbols matched) | |
if len(config) > 1: | |
config.sort(key=len, reverse=True) | |
assert len(config[0]) != len(config[1]), name # make sure only one 'best' match | |
return cls(**transformer_configs[config[0]]) | |
transformer_configs = { | |
"CodeLlama-7b-Python-hf": dict(block_size=16384, vocab_size=32000, n_layer=32, dim=4096, rope_base=1000000), | |
"7B": dict(n_layer=32, n_head=32, dim=4096), | |
"13B": dict(n_layer=40, n_head=40, dim=5120), | |
"30B": dict(n_layer=60, n_head=52, dim=6656), | |
"34B": dict(n_layer=48, n_head=64, dim=8192, vocab_size=32000, n_local_heads=8, intermediate_size=22016, | |
rope_base=1000000), # CodeLlama-34B-Python-hf | |
"70B": dict(n_layer=80, n_head=64, dim=8192, n_local_heads=8, intermediate_size=28672), | |
"Mistral-7B": dict(n_layer=32, n_head=32, n_local_heads=8, dim=4096, intermediate_size=14336, vocab_size=32000), | |
"stories15M": dict(n_layer=6, n_head=6, dim=288), | |
"stories110M": dict(n_layer=12, n_head=12, dim=768), | |
"llama-3-8b": dict(block_size=8192, n_layer=32, n_head=32, n_local_heads=8, dim=4096, intermediate_size=14336, | |
vocab_size=128256, rope_base=500000), | |
"llama-3-70b": dict(block_size=8192, n_layer=80, n_head=64, n_local_heads=8, dim=8192, intermediate_size=28672, | |
vocab_size=128256, rope_base=500000), | |
} | |
class KVCache(nn.Module): | |
def __init__(self, max_batch_size, max_seq_length, n_heads, head_dim, dtype=torch.bfloat16): | |
super().__init__() | |
cache_shape = (max_batch_size, n_heads, max_seq_length, head_dim) | |
self.register_buffer('k_cache', torch.zeros(cache_shape, dtype=dtype)) | |
self.register_buffer('v_cache', torch.zeros(cache_shape, dtype=dtype)) | |
def update(self, input_pos, k_val, v_val): | |
# input_pos: [S], k_val: [B, H, S, D] | |
assert input_pos.shape[0] == k_val.shape[2] | |
k_out = self.k_cache | |
v_out = self.v_cache | |
k_out[:, :, input_pos] = k_val | |
v_out[:, :, input_pos] = v_val | |
return k_out, v_out | |
class Transformer(nn.Module): | |
def __init__(self, config: ModelArgs) -> None: | |
super().__init__() | |
self.config = config | |
self.layers = nn.ModuleList(TransformerBlock(config) for _ in range(config.n_layer)) | |
self.norm = AdaptiveLayerNorm(config.dim, RMSNorm(config.dim, eps=config.norm_eps)) | |
self.freqs_cis: Optional[Tensor] = None | |
self.mask_cache: Optional[Tensor] = None | |
self.max_batch_size = -1 | |
self.max_seq_length = -1 | |
def setup_caches(self, max_batch_size, max_seq_length, use_kv_cache=True): | |
if self.max_seq_length >= max_seq_length and self.max_batch_size >= max_batch_size: | |
return | |
head_dim = self.config.dim // self.config.n_head | |
max_seq_length = find_multiple(max_seq_length, 8) | |
self.max_seq_length = max_seq_length | |
self.max_batch_size = max_batch_size | |
dtype = self.norm.project_layer.weight.dtype | |
device = self.norm.project_layer.weight.device | |
if not self.training and use_kv_cache: | |
for b in self.layers: | |
b.attention.kv_cache = KVCache(max_batch_size, max_seq_length, self.config.n_local_heads, head_dim, dtype).to(device) | |
self.freqs_cis = precompute_freqs_cis(self.config.block_size, self.config.head_dim, | |
self.config.rope_base, dtype).to(device) | |
self.causal_mask = torch.tril(torch.ones(self.max_seq_length, self.max_seq_length, dtype=torch.bool)).to(device) | |
self.use_kv_cache = use_kv_cache | |
self.uvit_skip_connection = self.config.uvit_skip_connection | |
if self.uvit_skip_connection: | |
self.layers_emit_skip = [i for i in range(self.config.n_layer) if i < self.config.n_layer // 2] | |
self.layers_receive_skip = [i for i in range(self.config.n_layer) if i > self.config.n_layer // 2] | |
else: | |
self.layers_emit_skip = [] | |
self.layers_receive_skip = [] | |
def forward(self, | |
x: Tensor, | |
c: Tensor, | |
input_pos: Optional[Tensor] = None, | |
mask: Optional[Tensor] = None, | |
context: Optional[Tensor] = None, | |
context_input_pos: Optional[Tensor] = None, | |
cross_attention_mask: Optional[Tensor] = None, | |
) -> Tensor: | |
assert self.freqs_cis is not None, "Caches must be initialized first" | |
if mask is None: # in case of non-causal model | |
if not self.training and self.use_kv_cache: | |
mask = self.causal_mask[None, None, input_pos] | |
else: | |
mask = self.causal_mask[None, None, input_pos] | |
mask = mask[..., input_pos] | |
freqs_cis = self.freqs_cis[input_pos] | |
if context is not None: | |
context_freqs_cis = self.freqs_cis[context_input_pos] | |
else: | |
context_freqs_cis = None | |
skip_in_x_list = [] | |
for i, layer in enumerate(self.layers): | |
if self.uvit_skip_connection and i in self.layers_receive_skip: | |
skip_in_x = skip_in_x_list.pop(-1) | |
else: | |
skip_in_x = None | |
x = layer(x, c, input_pos, freqs_cis, mask, context, context_freqs_cis, cross_attention_mask, skip_in_x) | |
if self.uvit_skip_connection and i in self.layers_emit_skip: | |
skip_in_x_list.append(x) | |
x = self.norm(x, c) | |
return x | |
def from_name(cls, name: str): | |
return cls(ModelArgs.from_name(name)) | |
class TransformerBlock(nn.Module): | |
def __init__(self, config: ModelArgs) -> None: | |
super().__init__() | |
self.attention = Attention(config) | |
self.feed_forward = FeedForward(config) | |
self.ffn_norm = AdaptiveLayerNorm(config.dim, RMSNorm(config.dim, eps=config.norm_eps)) | |
self.attention_norm = AdaptiveLayerNorm(config.dim, RMSNorm(config.dim, eps=config.norm_eps)) | |
if config.has_cross_attention: | |
self.has_cross_attention = True | |
self.cross_attention = Attention(config, is_cross_attention=True) | |
self.cross_attention_norm = AdaptiveLayerNorm(config.dim, RMSNorm(config.dim, eps=config.norm_eps)) | |
else: | |
self.has_cross_attention = False | |
if config.uvit_skip_connection: | |
self.skip_in_linear = nn.Linear(config.dim * 2, config.dim) | |
self.uvit_skip_connection = True | |
else: | |
self.uvit_skip_connection = False | |
def forward(self, | |
x: Tensor, | |
c: Tensor, | |
input_pos: Tensor, | |
freqs_cis: Tensor, | |
mask: Tensor, | |
context: Optional[Tensor] = None, | |
context_freqs_cis: Optional[Tensor] = None, | |
cross_attention_mask: Optional[Tensor] = None, | |
skip_in_x: Optional[Tensor] = None, | |
) -> Tensor: | |
if self.uvit_skip_connection and skip_in_x is not None: | |
x = self.skip_in_linear(torch.cat([x, skip_in_x], dim=-1)) | |
h = x + self.attention(self.attention_norm(x, c), freqs_cis, mask, input_pos) | |
if self.has_cross_attention: | |
h = h + self.cross_attention(self.cross_attention_norm(h, c), freqs_cis, cross_attention_mask, input_pos, context, context_freqs_cis) | |
out = h + self.feed_forward(self.ffn_norm(h, c)) | |
return out | |
class Attention(nn.Module): | |
def __init__(self, config: ModelArgs, is_cross_attention: bool = False): | |
super().__init__() | |
assert config.dim % config.n_head == 0 | |
total_head_dim = (config.n_head + 2 * config.n_local_heads) * config.head_dim | |
# key, query, value projections for all heads, but in a batch | |
if is_cross_attention: | |
self.wq = nn.Linear(config.dim, config.n_head * config.head_dim, bias=False) | |
self.wkv = nn.Linear(config.context_dim, 2 * config.n_local_heads * config.head_dim, bias=False) | |
else: | |
self.wqkv = nn.Linear(config.dim, total_head_dim, bias=False) | |
self.wo = nn.Linear(config.head_dim * config.n_head, config.dim, bias=False) | |
self.kv_cache = None | |
self.n_head = config.n_head | |
self.head_dim = config.head_dim | |
self.n_local_heads = config.n_local_heads | |
self.dim = config.dim | |
# self._register_load_state_dict_pre_hook(self.load_hook) | |
# def load_hook(self, state_dict, prefix, *args): | |
# if prefix + "wq.weight" in state_dict: | |
# wq = state_dict.pop(prefix + "wq.weight") | |
# wk = state_dict.pop(prefix + "wk.weight") | |
# wv = state_dict.pop(prefix + "wv.weight") | |
# state_dict[prefix + "wqkv.weight"] = torch.cat([wq, wk, wv]) | |
def forward(self, | |
x: Tensor, | |
freqs_cis: Tensor, | |
mask: Tensor, | |
input_pos: Optional[Tensor] = None, | |
context: Optional[Tensor] = None, | |
context_freqs_cis: Optional[Tensor] = None, | |
) -> Tensor: | |
bsz, seqlen, _ = x.shape | |
kv_size = self.n_local_heads * self.head_dim | |
if context is None: | |
q, k, v = self.wqkv(x).split([kv_size, kv_size, kv_size], dim=-1) | |
context_seqlen = seqlen | |
else: | |
q = self.wq(x) | |
k, v = self.wkv(context).split([kv_size, kv_size], dim=-1) | |
context_seqlen = context.shape[1] | |
q = q.view(bsz, seqlen, self.n_head, self.head_dim) | |
k = k.view(bsz, context_seqlen, self.n_local_heads, self.head_dim) | |
v = v.view(bsz, context_seqlen, self.n_local_heads, self.head_dim) | |
q = apply_rotary_emb(q, freqs_cis) | |
k = apply_rotary_emb(k, context_freqs_cis if context_freqs_cis is not None else freqs_cis) | |
q, k, v = map(lambda x: x.transpose(1, 2), (q, k, v)) | |
if self.kv_cache is not None: | |
k, v = self.kv_cache.update(input_pos, k, v) | |
k = k.repeat_interleave(self.n_head // self.n_local_heads, dim=1) | |
v = v.repeat_interleave(self.n_head // self.n_local_heads, dim=1) | |
y = F.scaled_dot_product_attention(q, k, v, attn_mask=mask, dropout_p=0.0) | |
y = y.transpose(1, 2).contiguous().view(bsz, seqlen, self.head_dim * self.n_head) | |
y = self.wo(y) | |
return y | |
class FeedForward(nn.Module): | |
def __init__(self, config: ModelArgs) -> None: | |
super().__init__() | |
self.w1 = nn.Linear(config.dim, config.intermediate_size, bias=False) | |
self.w3 = nn.Linear(config.dim, config.intermediate_size, bias=False) | |
self.w2 = nn.Linear(config.intermediate_size, config.dim, bias=False) | |
def forward(self, x: Tensor) -> Tensor: | |
return self.w2(F.silu(self.w1(x)) * self.w3(x)) | |
class RMSNorm(nn.Module): | |
def __init__(self, dim: int, eps: float = 1e-5): | |
super().__init__() | |
self.eps = eps | |
self.weight = nn.Parameter(torch.ones(dim)) | |
def _norm(self, x): | |
return x * torch.rsqrt(torch.mean(x * x, dim=-1, keepdim=True) + self.eps) | |
def forward(self, x: Tensor) -> Tensor: | |
output = self._norm(x.float()).type_as(x) | |
return output * self.weight | |
def precompute_freqs_cis( | |
seq_len: int, n_elem: int, base: int = 10000, | |
dtype: torch.dtype = torch.bfloat16 | |
) -> Tensor: | |
freqs = 1.0 / (base ** (torch.arange(0, n_elem, 2)[: (n_elem // 2)].float() / n_elem)) | |
t = torch.arange(seq_len, device=freqs.device) | |
freqs = torch.outer(t, freqs) | |
freqs_cis = torch.polar(torch.ones_like(freqs), freqs) | |
cache = torch.stack([freqs_cis.real, freqs_cis.imag], dim=-1) | |
return cache.to(dtype=dtype) | |
def apply_rotary_emb(x: Tensor, freqs_cis: Tensor) -> Tensor: | |
xshaped = x.float().reshape(*x.shape[:-1], -1, 2) | |
freqs_cis = freqs_cis.view(1, xshaped.size(1), 1, xshaped.size(3), 2) | |
x_out2 = torch.stack( | |
[ | |
xshaped[..., 0] * freqs_cis[..., 0] - xshaped[..., 1] * freqs_cis[..., 1], | |
xshaped[..., 1] * freqs_cis[..., 0] + xshaped[..., 0] * freqs_cis[..., 1], | |
], | |
-1, | |
) | |
x_out2 = x_out2.flatten(3) | |
return x_out2.type_as(x) | |