Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
from torch import nn | |
import math | |
from modules.gpt_fast.model import ModelArgs, Transformer | |
# from modules.torchscript_modules.gpt_fast_model import ModelArgs, Transformer | |
from modules.wavenet import WN | |
from modules.commons import sequence_mask | |
from torch.nn.utils import weight_norm | |
def modulate(x, shift, scale): | |
return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1) | |
################################################################################# | |
# Embedding Layers for Timesteps and Class Labels # | |
################################################################################# | |
class TimestepEmbedder(nn.Module): | |
""" | |
Embeds scalar timesteps into vector representations. | |
""" | |
def __init__(self, hidden_size, frequency_embedding_size=256): | |
super().__init__() | |
self.mlp = nn.Sequential( | |
nn.Linear(frequency_embedding_size, hidden_size, bias=True), | |
nn.SiLU(), | |
nn.Linear(hidden_size, hidden_size, bias=True), | |
) | |
self.frequency_embedding_size = frequency_embedding_size | |
self.max_period = 10000 | |
self.scale = 1000 | |
half = frequency_embedding_size // 2 | |
freqs = torch.exp( | |
-math.log(self.max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half | |
) | |
self.register_buffer("freqs", freqs) | |
def timestep_embedding(self, t): | |
""" | |
Create sinusoidal timestep embeddings. | |
:param t: a 1-D Tensor of N indices, one per batch element. | |
These may be fractional. | |
:param dim: the dimension of the output. | |
:param max_period: controls the minimum frequency of the embeddings. | |
:return: an (N, D) Tensor of positional embeddings. | |
""" | |
# https://github.com/openai/glide-text2im/blob/main/glide_text2im/nn.py | |
args = self.scale * t[:, None].float() * self.freqs[None] | |
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1) | |
if self.frequency_embedding_size % 2: | |
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1) | |
return embedding | |
def forward(self, t): | |
t_freq = self.timestep_embedding(t) | |
t_emb = self.mlp(t_freq) | |
return t_emb | |
class StyleEmbedder(nn.Module): | |
""" | |
Embeds class labels into vector representations. Also handles label dropout for classifier-free guidance. | |
""" | |
def __init__(self, input_size, hidden_size, dropout_prob): | |
super().__init__() | |
use_cfg_embedding = dropout_prob > 0 | |
self.embedding_table = nn.Embedding(int(use_cfg_embedding), hidden_size) | |
self.style_in = weight_norm(nn.Linear(input_size, hidden_size, bias=True)) | |
self.input_size = input_size | |
self.dropout_prob = dropout_prob | |
def forward(self, labels, train, force_drop_ids=None): | |
use_dropout = self.dropout_prob > 0 | |
if (train and use_dropout) or (force_drop_ids is not None): | |
labels = self.token_drop(labels, force_drop_ids) | |
else: | |
labels = self.style_in(labels) | |
embeddings = labels | |
return embeddings | |
class FinalLayer(nn.Module): | |
""" | |
The final layer of DiT. | |
""" | |
def __init__(self, hidden_size, patch_size, out_channels): | |
super().__init__() | |
self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) | |
self.linear = weight_norm(nn.Linear(hidden_size, patch_size * patch_size * out_channels, bias=True)) | |
self.adaLN_modulation = nn.Sequential( | |
nn.SiLU(), | |
nn.Linear(hidden_size, 2 * hidden_size, bias=True) | |
) | |
def forward(self, x, c): | |
shift, scale = self.adaLN_modulation(c).chunk(2, dim=1) | |
x = modulate(self.norm_final(x), shift, scale) | |
x = self.linear(x) | |
return x | |
class DiT(torch.nn.Module): | |
def __init__( | |
self, | |
args | |
): | |
super(DiT, self).__init__() | |
self.time_as_token = args.DiT.time_as_token if hasattr(args.DiT, 'time_as_token') else False | |
self.style_as_token = args.DiT.style_as_token if hasattr(args.DiT, 'style_as_token') else False | |
self.uvit_skip_connection = args.DiT.uvit_skip_connection if hasattr(args.DiT, 'uvit_skip_connection') else False | |
model_args = ModelArgs( | |
block_size=16384,#args.DiT.block_size, | |
n_layer=args.DiT.depth, | |
n_head=args.DiT.num_heads, | |
dim=args.DiT.hidden_dim, | |
head_dim=args.DiT.hidden_dim // args.DiT.num_heads, | |
vocab_size=1024, | |
uvit_skip_connection=self.uvit_skip_connection, | |
) | |
self.transformer = Transformer(model_args) | |
self.in_channels = args.DiT.in_channels | |
self.out_channels = args.DiT.in_channels | |
self.num_heads = args.DiT.num_heads | |
self.x_embedder = weight_norm(nn.Linear(args.DiT.in_channels, args.DiT.hidden_dim, bias=True)) | |
self.content_type = args.DiT.content_type # 'discrete' or 'continuous' | |
self.content_codebook_size = args.DiT.content_codebook_size # for discrete content | |
self.content_dim = args.DiT.content_dim # for continuous content | |
self.cond_embedder = nn.Embedding(args.DiT.content_codebook_size, args.DiT.hidden_dim) # discrete content | |
self.cond_projection = nn.Linear(args.DiT.content_dim, args.DiT.hidden_dim, bias=True) # continuous content | |
self.is_causal = args.DiT.is_causal | |
self.n_f0_bins = args.DiT.n_f0_bins | |
self.f0_bins = torch.arange(2, 1024, 1024 // args.DiT.n_f0_bins) | |
self.f0_embedder = nn.Embedding(args.DiT.n_f0_bins, args.DiT.hidden_dim) | |
self.f0_condition = args.DiT.f0_condition | |
self.t_embedder = TimestepEmbedder(args.DiT.hidden_dim) | |
self.t_embedder2 = TimestepEmbedder(args.wavenet.hidden_dim) | |
# self.style_embedder1 = weight_norm(nn.Linear(1024, args.DiT.hidden_dim, bias=True)) | |
# self.style_embedder2 = weight_norm(nn.Linear(1024, args.style_encoder.dim, bias=True)) | |
input_pos = torch.arange(16384) | |
self.register_buffer("input_pos", input_pos) | |
self.conv1 = nn.Linear(args.DiT.hidden_dim, args.wavenet.hidden_dim) | |
self.conv2 = nn.Conv1d(args.wavenet.hidden_dim, args.DiT.in_channels, 1) | |
self.final_layer_type = args.DiT.final_layer_type # mlp or wavenet | |
if self.final_layer_type == 'wavenet': | |
self.wavenet = WN(hidden_channels=args.wavenet.hidden_dim, | |
kernel_size=args.wavenet.kernel_size, | |
dilation_rate=args.wavenet.dilation_rate, | |
n_layers=args.wavenet.num_layers, | |
gin_channels=args.wavenet.hidden_dim, | |
p_dropout=args.wavenet.p_dropout, | |
causal=False) | |
self.final_layer = FinalLayer(args.wavenet.hidden_dim, 1, args.wavenet.hidden_dim) | |
else: | |
self.final_mlp = nn.Sequential( | |
nn.Linear(args.DiT.hidden_dim, args.DiT.hidden_dim), | |
nn.SiLU(), | |
nn.Linear(args.DiT.hidden_dim, args.DiT.in_channels), | |
) | |
self.transformer_style_condition = args.DiT.style_condition | |
self.wavenet_style_condition = args.wavenet.style_condition | |
assert args.DiT.style_condition == args.wavenet.style_condition | |
self.class_dropout_prob = args.DiT.class_dropout_prob | |
self.content_mask_embedder = nn.Embedding(1, args.DiT.hidden_dim) | |
self.res_projection = nn.Linear(args.DiT.hidden_dim, args.wavenet.hidden_dim) # residual connection from tranformer output to final output | |
self.long_skip_connection = args.DiT.long_skip_connection | |
self.skip_linear = nn.Linear(args.DiT.hidden_dim + args.DiT.in_channels, args.DiT.hidden_dim) | |
self.cond_x_merge_linear = nn.Linear(args.DiT.hidden_dim + args.DiT.in_channels * 2 + | |
args.style_encoder.dim * self.transformer_style_condition * (not self.style_as_token), | |
args.DiT.hidden_dim) | |
if self.style_as_token: | |
self.style_in = nn.Linear(args.style_encoder.dim, args.DiT.hidden_dim) | |
def setup_caches(self, max_batch_size, max_seq_length): | |
self.transformer.setup_caches(max_batch_size, max_seq_length, use_kv_cache=False) | |
def forward(self, x, prompt_x, x_lens, t, style, cond, f0=None, mask_content=False): | |
class_dropout = False | |
if self.training and torch.rand(1) < self.class_dropout_prob: | |
class_dropout = True | |
if not self.training and mask_content: | |
class_dropout = True | |
# cond_in_module = self.cond_embedder if self.content_type == 'discrete' else self.cond_projection | |
cond_in_module = self.cond_projection | |
B, _, T = x.size() | |
t1 = self.t_embedder(t) # (N, D) | |
cond = cond_in_module(cond) | |
if self.f0_condition and f0 is not None: | |
quantized_f0 = torch.bucketize(f0, self.f0_bins.to(f0.device)) # (N, T) | |
cond = cond + self.f0_embedder(quantized_f0) | |
x = x.transpose(1, 2) | |
prompt_x = prompt_x.transpose(1, 2) | |
x_in = torch.cat([x, prompt_x, cond], dim=-1) | |
if self.transformer_style_condition and not self.style_as_token: | |
x_in = torch.cat([x_in, style[:, None, :].repeat(1, T, 1)], dim=-1) | |
if class_dropout: | |
x_in[..., self.in_channels:] = x_in[..., self.in_channels:] * 0 | |
x_in = self.cond_x_merge_linear(x_in) # (N, T, D) | |
if self.style_as_token: | |
style = self.style_in(style) | |
style = torch.zeros_like(style) if class_dropout else style | |
x_in = torch.cat([style.unsqueeze(1), x_in], dim=1) | |
if self.time_as_token: | |
x_in = torch.cat([t1.unsqueeze(1), x_in], dim=1) | |
x_mask = sequence_mask(x_lens + self.style_as_token + self.time_as_token).to(x.device).unsqueeze(1) | |
input_pos = self.input_pos[:x_in.size(1)] # (T,) | |
x_mask_expanded = x_mask[:, None, :].repeat(1, 1, x_in.size(1), 1) if not self.is_causal else None | |
x_res = self.transformer(x_in, None if self.time_as_token else t1.unsqueeze(1), input_pos, x_mask_expanded) | |
x_res = x_res[:, 1:] if self.time_as_token else x_res | |
x_res = x_res[:, 1:] if self.style_as_token else x_res | |
if self.long_skip_connection: | |
x_res = self.skip_linear(torch.cat([x_res, x], dim=-1)) | |
if self.final_layer_type == 'wavenet': | |
x = self.conv1(x_res) | |
x = x.transpose(1, 2) | |
t2 = self.t_embedder2(t) | |
x = self.wavenet(x, x_mask, g=t2.unsqueeze(2)).transpose(1, 2) + self.res_projection( | |
x_res) # long residual connection | |
x = self.final_layer(x, t1).transpose(1, 2) | |
x = self.conv2(x) | |
else: | |
x = self.final_mlp(x_res) | |
x = x.transpose(1, 2) | |
return x | |