Voice-CPU / modules /campplus /classifier.py
Staticaliza's picture
Upload 3 files
f70c122 verified
raw
history blame
1.87 kB
# Copyright 3D-Speaker (https://github.com/alibaba-damo-academy/3D-Speaker). All Rights Reserved.
# Licensed under the Apache License, Version 2.0 (http://www.apache.org/licenses/LICENSE-2.0)
import torch
import torch.nn as nn
import torch.nn.functional as F
from modules.campplus.layers import DenseLayer
class CosineClassifier(nn.Module):
def __init__(
self,
input_dim,
num_blocks=0,
inter_dim=512,
out_neurons=1000,
):
super().__init__()
self.blocks = nn.ModuleList()
for index in range(num_blocks):
self.blocks.append(
DenseLayer(input_dim, inter_dim, config_str='batchnorm')
)
input_dim = inter_dim
self.weight = nn.Parameter(
torch.FloatTensor(out_neurons, input_dim)
)
nn.init.xavier_uniform_(self.weight)
def forward(self, x):
# x: [B, dim]
for layer in self.blocks:
x = layer(x)
# normalized
x = F.linear(F.normalize(x), F.normalize(self.weight))
return x
class LinearClassifier(nn.Module):
def __init__(
self,
input_dim,
num_blocks=0,
inter_dim=512,
out_neurons=1000,
):
super().__init__()
self.blocks = nn.ModuleList()
self.nonlinear = nn.ReLU(inplace=True)
for index in range(num_blocks):
self.blocks.append(
DenseLayer(input_dim, inter_dim, bias=True)
)
input_dim = inter_dim
self.linear = nn.Linear(input_dim, out_neurons, bias=True)
def forward(self, x):
# x: [B, dim]
x = self.nonlinear(x)
for layer in self.blocks:
x = layer(x)
x = self.linear(x)
return x