Spaces:
Sleeping
Sleeping
from io import BytesIO | |
import os | |
from typing import List, Optional, Tuple | |
import numpy as np | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from librosa.util import normalize, pad_center, tiny | |
from scipy.signal import get_window | |
import logging | |
logger = logging.getLogger(__name__) | |
class STFT(torch.nn.Module): | |
def __init__( | |
self, filter_length=1024, hop_length=512, win_length=None, window="hann" | |
): | |
""" | |
This module implements an STFT using 1D convolution and 1D transpose convolutions. | |
This is a bit tricky so there are some cases that probably won't work as working | |
out the same sizes before and after in all overlap add setups is tough. Right now, | |
this code should work with hop lengths that are half the filter length (50% overlap | |
between frames). | |
Keyword Arguments: | |
filter_length {int} -- Length of filters used (default: {1024}) | |
hop_length {int} -- Hop length of STFT (restrict to 50% overlap between frames) (default: {512}) | |
win_length {[type]} -- Length of the window function applied to each frame (if not specified, it | |
equals the filter length). (default: {None}) | |
window {str} -- Type of window to use (options are bartlett, hann, hamming, blackman, blackmanharris) | |
(default: {'hann'}) | |
""" | |
super(STFT, self).__init__() | |
self.filter_length = filter_length | |
self.hop_length = hop_length | |
self.win_length = win_length if win_length else filter_length | |
self.window = window | |
self.forward_transform = None | |
self.pad_amount = int(self.filter_length / 2) | |
fourier_basis = np.fft.fft(np.eye(self.filter_length)) | |
cutoff = int((self.filter_length / 2 + 1)) | |
fourier_basis = np.vstack( | |
[np.real(fourier_basis[:cutoff, :]), np.imag(fourier_basis[:cutoff, :])] | |
) | |
forward_basis = torch.FloatTensor(fourier_basis) | |
inverse_basis = torch.FloatTensor(np.linalg.pinv(fourier_basis)) | |
assert filter_length >= self.win_length | |
# get window and zero center pad it to filter_length | |
fft_window = get_window(window, self.win_length, fftbins=True) | |
fft_window = pad_center(fft_window, size=filter_length) | |
fft_window = torch.from_numpy(fft_window).float() | |
# window the bases | |
forward_basis *= fft_window | |
inverse_basis = (inverse_basis.T * fft_window).T | |
self.register_buffer("forward_basis", forward_basis.float()) | |
self.register_buffer("inverse_basis", inverse_basis.float()) | |
self.register_buffer("fft_window", fft_window.float()) | |
def transform(self, input_data, return_phase=False): | |
"""Take input data (audio) to STFT domain. | |
Arguments: | |
input_data {tensor} -- Tensor of floats, with shape (num_batch, num_samples) | |
Returns: | |
magnitude {tensor} -- Magnitude of STFT with shape (num_batch, | |
num_frequencies, num_frames) | |
phase {tensor} -- Phase of STFT with shape (num_batch, | |
num_frequencies, num_frames) | |
""" | |
input_data = F.pad( | |
input_data, | |
(self.pad_amount, self.pad_amount), | |
mode="reflect", | |
) | |
forward_transform = input_data.unfold( | |
1, self.filter_length, self.hop_length | |
).permute(0, 2, 1) | |
forward_transform = torch.matmul(self.forward_basis, forward_transform) | |
cutoff = int((self.filter_length / 2) + 1) | |
real_part = forward_transform[:, :cutoff, :] | |
imag_part = forward_transform[:, cutoff:, :] | |
magnitude = torch.sqrt(real_part**2 + imag_part**2) | |
if return_phase: | |
phase = torch.atan2(imag_part.data, real_part.data) | |
return magnitude, phase | |
else: | |
return magnitude | |
def inverse(self, magnitude, phase): | |
"""Call the inverse STFT (iSTFT), given magnitude and phase tensors produced | |
by the ```transform``` function. | |
Arguments: | |
magnitude {tensor} -- Magnitude of STFT with shape (num_batch, | |
num_frequencies, num_frames) | |
phase {tensor} -- Phase of STFT with shape (num_batch, | |
num_frequencies, num_frames) | |
Returns: | |
inverse_transform {tensor} -- Reconstructed audio given magnitude and phase. Of | |
shape (num_batch, num_samples) | |
""" | |
cat = torch.cat( | |
[magnitude * torch.cos(phase), magnitude * torch.sin(phase)], dim=1 | |
) | |
fold = torch.nn.Fold( | |
output_size=(1, (cat.size(-1) - 1) * self.hop_length + self.filter_length), | |
kernel_size=(1, self.filter_length), | |
stride=(1, self.hop_length), | |
) | |
inverse_transform = torch.matmul(self.inverse_basis, cat) | |
inverse_transform = fold(inverse_transform)[ | |
:, 0, 0, self.pad_amount : -self.pad_amount | |
] | |
window_square_sum = ( | |
self.fft_window.pow(2).repeat(cat.size(-1), 1).T.unsqueeze(0) | |
) | |
window_square_sum = fold(window_square_sum)[ | |
:, 0, 0, self.pad_amount : -self.pad_amount | |
] | |
inverse_transform /= window_square_sum | |
return inverse_transform | |
def forward(self, input_data): | |
"""Take input data (audio) to STFT domain and then back to audio. | |
Arguments: | |
input_data {tensor} -- Tensor of floats, with shape (num_batch, num_samples) | |
Returns: | |
reconstruction {tensor} -- Reconstructed audio given magnitude and phase. Of | |
shape (num_batch, num_samples) | |
""" | |
self.magnitude, self.phase = self.transform(input_data, return_phase=True) | |
reconstruction = self.inverse(self.magnitude, self.phase) | |
return reconstruction | |
from time import time as ttime | |
class BiGRU(nn.Module): | |
def __init__(self, input_features, hidden_features, num_layers): | |
super(BiGRU, self).__init__() | |
self.gru = nn.GRU( | |
input_features, | |
hidden_features, | |
num_layers=num_layers, | |
batch_first=True, | |
bidirectional=True, | |
) | |
def forward(self, x): | |
return self.gru(x)[0] | |
class ConvBlockRes(nn.Module): | |
def __init__(self, in_channels, out_channels, momentum=0.01): | |
super(ConvBlockRes, self).__init__() | |
self.conv = nn.Sequential( | |
nn.Conv2d( | |
in_channels=in_channels, | |
out_channels=out_channels, | |
kernel_size=(3, 3), | |
stride=(1, 1), | |
padding=(1, 1), | |
bias=False, | |
), | |
nn.BatchNorm2d(out_channels, momentum=momentum), | |
nn.ReLU(), | |
nn.Conv2d( | |
in_channels=out_channels, | |
out_channels=out_channels, | |
kernel_size=(3, 3), | |
stride=(1, 1), | |
padding=(1, 1), | |
bias=False, | |
), | |
nn.BatchNorm2d(out_channels, momentum=momentum), | |
nn.ReLU(), | |
) | |
# self.shortcut:Optional[nn.Module] = None | |
if in_channels != out_channels: | |
self.shortcut = nn.Conv2d(in_channels, out_channels, (1, 1)) | |
def forward(self, x: torch.Tensor): | |
if not hasattr(self, "shortcut"): | |
return self.conv(x) + x | |
else: | |
return self.conv(x) + self.shortcut(x) | |
class Encoder(nn.Module): | |
def __init__( | |
self, | |
in_channels, | |
in_size, | |
n_encoders, | |
kernel_size, | |
n_blocks, | |
out_channels=16, | |
momentum=0.01, | |
): | |
super(Encoder, self).__init__() | |
self.n_encoders = n_encoders | |
self.bn = nn.BatchNorm2d(in_channels, momentum=momentum) | |
self.layers = nn.ModuleList() | |
self.latent_channels = [] | |
for i in range(self.n_encoders): | |
self.layers.append( | |
ResEncoderBlock( | |
in_channels, out_channels, kernel_size, n_blocks, momentum=momentum | |
) | |
) | |
self.latent_channels.append([out_channels, in_size]) | |
in_channels = out_channels | |
out_channels *= 2 | |
in_size //= 2 | |
self.out_size = in_size | |
self.out_channel = out_channels | |
def forward(self, x: torch.Tensor): | |
concat_tensors: List[torch.Tensor] = [] | |
x = self.bn(x) | |
for i, layer in enumerate(self.layers): | |
t, x = layer(x) | |
concat_tensors.append(t) | |
return x, concat_tensors | |
class ResEncoderBlock(nn.Module): | |
def __init__( | |
self, in_channels, out_channels, kernel_size, n_blocks=1, momentum=0.01 | |
): | |
super(ResEncoderBlock, self).__init__() | |
self.n_blocks = n_blocks | |
self.conv = nn.ModuleList() | |
self.conv.append(ConvBlockRes(in_channels, out_channels, momentum)) | |
for i in range(n_blocks - 1): | |
self.conv.append(ConvBlockRes(out_channels, out_channels, momentum)) | |
self.kernel_size = kernel_size | |
if self.kernel_size is not None: | |
self.pool = nn.AvgPool2d(kernel_size=kernel_size) | |
def forward(self, x): | |
for i, conv in enumerate(self.conv): | |
x = conv(x) | |
if self.kernel_size is not None: | |
return x, self.pool(x) | |
else: | |
return x | |
class Intermediate(nn.Module): # | |
def __init__(self, in_channels, out_channels, n_inters, n_blocks, momentum=0.01): | |
super(Intermediate, self).__init__() | |
self.n_inters = n_inters | |
self.layers = nn.ModuleList() | |
self.layers.append( | |
ResEncoderBlock(in_channels, out_channels, None, n_blocks, momentum) | |
) | |
for i in range(self.n_inters - 1): | |
self.layers.append( | |
ResEncoderBlock(out_channels, out_channels, None, n_blocks, momentum) | |
) | |
def forward(self, x): | |
for i, layer in enumerate(self.layers): | |
x = layer(x) | |
return x | |
class ResDecoderBlock(nn.Module): | |
def __init__(self, in_channels, out_channels, stride, n_blocks=1, momentum=0.01): | |
super(ResDecoderBlock, self).__init__() | |
out_padding = (0, 1) if stride == (1, 2) else (1, 1) | |
self.n_blocks = n_blocks | |
self.conv1 = nn.Sequential( | |
nn.ConvTranspose2d( | |
in_channels=in_channels, | |
out_channels=out_channels, | |
kernel_size=(3, 3), | |
stride=stride, | |
padding=(1, 1), | |
output_padding=out_padding, | |
bias=False, | |
), | |
nn.BatchNorm2d(out_channels, momentum=momentum), | |
nn.ReLU(), | |
) | |
self.conv2 = nn.ModuleList() | |
self.conv2.append(ConvBlockRes(out_channels * 2, out_channels, momentum)) | |
for i in range(n_blocks - 1): | |
self.conv2.append(ConvBlockRes(out_channels, out_channels, momentum)) | |
def forward(self, x, concat_tensor): | |
x = self.conv1(x) | |
x = torch.cat((x, concat_tensor), dim=1) | |
for i, conv2 in enumerate(self.conv2): | |
x = conv2(x) | |
return x | |
class Decoder(nn.Module): | |
def __init__(self, in_channels, n_decoders, stride, n_blocks, momentum=0.01): | |
super(Decoder, self).__init__() | |
self.layers = nn.ModuleList() | |
self.n_decoders = n_decoders | |
for i in range(self.n_decoders): | |
out_channels = in_channels // 2 | |
self.layers.append( | |
ResDecoderBlock(in_channels, out_channels, stride, n_blocks, momentum) | |
) | |
in_channels = out_channels | |
def forward(self, x: torch.Tensor, concat_tensors: List[torch.Tensor]): | |
for i, layer in enumerate(self.layers): | |
x = layer(x, concat_tensors[-1 - i]) | |
return x | |
class DeepUnet(nn.Module): | |
def __init__( | |
self, | |
kernel_size, | |
n_blocks, | |
en_de_layers=5, | |
inter_layers=4, | |
in_channels=1, | |
en_out_channels=16, | |
): | |
super(DeepUnet, self).__init__() | |
self.encoder = Encoder( | |
in_channels, 128, en_de_layers, kernel_size, n_blocks, en_out_channels | |
) | |
self.intermediate = Intermediate( | |
self.encoder.out_channel // 2, | |
self.encoder.out_channel, | |
inter_layers, | |
n_blocks, | |
) | |
self.decoder = Decoder( | |
self.encoder.out_channel, en_de_layers, kernel_size, n_blocks | |
) | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
x, concat_tensors = self.encoder(x) | |
x = self.intermediate(x) | |
x = self.decoder(x, concat_tensors) | |
return x | |
class E2E(nn.Module): | |
def __init__( | |
self, | |
n_blocks, | |
n_gru, | |
kernel_size, | |
en_de_layers=5, | |
inter_layers=4, | |
in_channels=1, | |
en_out_channels=16, | |
): | |
super(E2E, self).__init__() | |
self.unet = DeepUnet( | |
kernel_size, | |
n_blocks, | |
en_de_layers, | |
inter_layers, | |
in_channels, | |
en_out_channels, | |
) | |
self.cnn = nn.Conv2d(en_out_channels, 3, (3, 3), padding=(1, 1)) | |
if n_gru: | |
self.fc = nn.Sequential( | |
BiGRU(3 * 128, 256, n_gru), | |
nn.Linear(512, 360), | |
nn.Dropout(0.25), | |
nn.Sigmoid(), | |
) | |
else: | |
self.fc = nn.Sequential( | |
nn.Linear(3 * nn.N_MELS, nn.N_CLASS), nn.Dropout(0.25), nn.Sigmoid() | |
) | |
def forward(self, mel): | |
# print(mel.shape) | |
mel = mel.transpose(-1, -2).unsqueeze(1) | |
x = self.cnn(self.unet(mel)).transpose(1, 2).flatten(-2) | |
x = self.fc(x) | |
# print(x.shape) | |
return x | |
from librosa.filters import mel | |
class MelSpectrogram(torch.nn.Module): | |
def __init__( | |
self, | |
is_half, | |
n_mel_channels, | |
sampling_rate, | |
win_length, | |
hop_length, | |
n_fft=None, | |
mel_fmin=0, | |
mel_fmax=None, | |
clamp=1e-5, | |
): | |
super().__init__() | |
n_fft = win_length if n_fft is None else n_fft | |
self.hann_window = {} | |
mel_basis = mel( | |
sr=sampling_rate, | |
n_fft=n_fft, | |
n_mels=n_mel_channels, | |
fmin=mel_fmin, | |
fmax=mel_fmax, | |
htk=True, | |
) | |
mel_basis = torch.from_numpy(mel_basis).float() | |
self.register_buffer("mel_basis", mel_basis) | |
self.n_fft = win_length if n_fft is None else n_fft | |
self.hop_length = hop_length | |
self.win_length = win_length | |
self.sampling_rate = sampling_rate | |
self.n_mel_channels = n_mel_channels | |
self.clamp = clamp | |
self.is_half = is_half | |
def forward(self, audio, keyshift=0, speed=1, center=True): | |
factor = 2 ** (keyshift / 12) | |
n_fft_new = int(np.round(self.n_fft * factor)) | |
win_length_new = int(np.round(self.win_length * factor)) | |
hop_length_new = int(np.round(self.hop_length * speed)) | |
keyshift_key = str(keyshift) + "_" + str(audio.device) | |
if keyshift_key not in self.hann_window: | |
self.hann_window[keyshift_key] = torch.hann_window(win_length_new).to( | |
audio.device | |
) | |
if "privateuseone" in str(audio.device): | |
if not hasattr(self, "stft"): | |
self.stft = STFT( | |
filter_length=n_fft_new, | |
hop_length=hop_length_new, | |
win_length=win_length_new, | |
window="hann", | |
).to(audio.device) | |
magnitude = self.stft.transform(audio) | |
else: | |
fft = torch.stft( | |
audio, | |
n_fft=n_fft_new, | |
hop_length=hop_length_new, | |
win_length=win_length_new, | |
window=self.hann_window[keyshift_key], | |
center=center, | |
return_complex=True, | |
) | |
magnitude = torch.sqrt(fft.real.pow(2) + fft.imag.pow(2)) | |
if keyshift != 0: | |
size = self.n_fft // 2 + 1 | |
resize = magnitude.size(1) | |
if resize < size: | |
magnitude = F.pad(magnitude, (0, 0, 0, size - resize)) | |
magnitude = magnitude[:, :size, :] * self.win_length / win_length_new | |
mel_output = torch.matmul(self.mel_basis, magnitude) | |
if self.is_half == True: | |
mel_output = mel_output.half() | |
log_mel_spec = torch.log(torch.clamp(mel_output, min=self.clamp)) | |
return log_mel_spec | |
class RMVPE: | |
def __init__(self, model_path: str, is_half, device=None, use_jit=False): | |
self.resample_kernel = {} | |
self.resample_kernel = {} | |
self.is_half = is_half | |
if device is None: | |
device = "cuda:0" if torch.cuda.is_available() else "cpu" | |
self.device = device | |
self.mel_extractor = MelSpectrogram( | |
is_half, 128, 16000, 1024, 160, None, 30, 8000 | |
).to(device) | |
if "privateuseone" in str(device): | |
import onnxruntime as ort | |
ort_session = ort.InferenceSession( | |
"%s/rmvpe.onnx" % os.environ["rmvpe_root"], | |
providers=["DmlExecutionProvider"], | |
) | |
self.model = ort_session | |
else: | |
if str(self.device) == "cuda": | |
self.device = torch.device("cuda:0") | |
def get_default_model(): | |
model = E2E(4, 1, (2, 2)) | |
ckpt = torch.load(model_path, map_location="cpu") | |
model.load_state_dict(ckpt) | |
model.eval() | |
if is_half: | |
model = model.half() | |
else: | |
model = model.float() | |
return model | |
self.model = get_default_model() | |
self.model = self.model.to(device) | |
cents_mapping = 20 * np.arange(360) + 1997.3794084376191 | |
self.cents_mapping = np.pad(cents_mapping, (4, 4)) # 368 | |
def mel2hidden(self, mel): | |
with torch.no_grad(): | |
n_frames = mel.shape[-1] | |
n_pad = 32 * ((n_frames - 1) // 32 + 1) - n_frames | |
if n_pad > 0: | |
mel = F.pad(mel, (0, n_pad), mode="constant") | |
if "privateuseone" in str(self.device): | |
onnx_input_name = self.model.get_inputs()[0].name | |
onnx_outputs_names = self.model.get_outputs()[0].name | |
hidden = self.model.run( | |
[onnx_outputs_names], | |
input_feed={onnx_input_name: mel.cpu().numpy()}, | |
)[0] | |
else: | |
mel = mel.half() if self.is_half else mel.float() | |
hidden = self.model(mel) | |
return hidden[:, :n_frames] | |
def decode(self, hidden, thred=0.03): | |
cents_pred = self.to_local_average_cents(hidden, thred=thred) | |
f0 = 10 * (2 ** (cents_pred / 1200)) | |
f0[f0 == 10] = 0 | |
# f0 = np.array([10 * (2 ** (cent_pred / 1200)) if cent_pred else 0 for cent_pred in cents_pred]) | |
return f0 | |
def infer_from_audio(self, audio, thred=0.03): | |
# torch.cuda.synchronize() | |
# t0 = ttime() | |
if not torch.is_tensor(audio): | |
audio = torch.from_numpy(audio) | |
mel = self.mel_extractor( | |
audio.float().to(self.device).unsqueeze(0), center=True | |
) | |
# print(123123123,mel.device.type) | |
# torch.cuda.synchronize() | |
# t1 = ttime() | |
hidden = self.mel2hidden(mel) | |
# torch.cuda.synchronize() | |
# t2 = ttime() | |
# print(234234,hidden.device.type) | |
if "privateuseone" not in str(self.device): | |
hidden = hidden.squeeze(0).cpu().numpy() | |
else: | |
hidden = hidden[0] | |
if self.is_half == True: | |
hidden = hidden.astype("float32") | |
f0 = self.decode(hidden, thred=thred) | |
# torch.cuda.synchronize() | |
# t3 = ttime() | |
# print("hmvpe:%s\t%s\t%s\t%s"%(t1-t0,t2-t1,t3-t2,t3-t0)) | |
return f0 | |
def to_local_average_cents(self, salience, thred=0.05): | |
# t0 = ttime() | |
center = np.argmax(salience, axis=1) # 帧长#index | |
salience = np.pad(salience, ((0, 0), (4, 4))) # 帧长,368 | |
# t1 = ttime() | |
center += 4 | |
todo_salience = [] | |
todo_cents_mapping = [] | |
starts = center - 4 | |
ends = center + 5 | |
for idx in range(salience.shape[0]): | |
todo_salience.append(salience[:, starts[idx] : ends[idx]][idx]) | |
todo_cents_mapping.append(self.cents_mapping[starts[idx] : ends[idx]]) | |
# t2 = ttime() | |
todo_salience = np.array(todo_salience) # 帧长,9 | |
todo_cents_mapping = np.array(todo_cents_mapping) # 帧长,9 | |
product_sum = np.sum(todo_salience * todo_cents_mapping, 1) | |
weight_sum = np.sum(todo_salience, 1) # 帧长 | |
devided = product_sum / weight_sum # 帧长 | |
# t3 = ttime() | |
maxx = np.max(salience, axis=1) # 帧长 | |
devided[maxx <= thred] = 0 | |
# t4 = ttime() | |
# print("decode:%s\t%s\t%s\t%s" % (t1 - t0, t2 - t1, t3 - t2, t4 - t3)) | |
return devided | |