Spaces:
Sleeping
Sleeping
from typing import Tuple | |
import torch | |
import torch.nn as nn | |
from torch.nn import functional as F | |
from modules.commons import sequence_mask | |
import numpy as np | |
from dac.nn.quantize import VectorQuantize | |
# f0_bin = 256 | |
f0_max = 1100.0 | |
f0_min = 50.0 | |
f0_mel_min = 1127 * np.log(1 + f0_min / 700) | |
f0_mel_max = 1127 * np.log(1 + f0_max / 700) | |
def f0_to_coarse(f0, f0_bin): | |
f0_mel = 1127 * (1 + f0 / 700).log() | |
a = (f0_bin - 2) / (f0_mel_max - f0_mel_min) | |
b = f0_mel_min * a - 1. | |
f0_mel = torch.where(f0_mel > 0, f0_mel * a - b, f0_mel) | |
# torch.clip_(f0_mel, min=1., max=float(f0_bin - 1)) | |
f0_coarse = torch.round(f0_mel).long() | |
f0_coarse = f0_coarse * (f0_coarse > 0) | |
f0_coarse = f0_coarse + ((f0_coarse < 1) * 1) | |
f0_coarse = f0_coarse * (f0_coarse < f0_bin) | |
f0_coarse = f0_coarse + ((f0_coarse >= f0_bin) * (f0_bin - 1)) | |
return f0_coarse | |
class InterpolateRegulator(nn.Module): | |
def __init__( | |
self, | |
channels: int, | |
sampling_ratios: Tuple, | |
is_discrete: bool = False, | |
in_channels: int = None, # only applies to continuous input | |
vector_quantize: bool = False, # whether to use vector quantization, only applies to continuous input | |
codebook_size: int = 1024, # for discrete only | |
out_channels: int = None, | |
groups: int = 1, | |
n_codebooks: int = 1, # number of codebooks | |
quantizer_dropout: float = 0.0, # dropout for quantizer | |
f0_condition: bool = False, | |
n_f0_bins: int = 512, | |
): | |
super().__init__() | |
self.sampling_ratios = sampling_ratios | |
out_channels = out_channels or channels | |
model = nn.ModuleList([]) | |
if len(sampling_ratios) > 0: | |
self.interpolate = True | |
for _ in sampling_ratios: | |
module = nn.Conv1d(channels, channels, 3, 1, 1) | |
norm = nn.GroupNorm(groups, channels) | |
act = nn.Mish() | |
model.extend([module, norm, act]) | |
else: | |
self.interpolate = False | |
model.append( | |
nn.Conv1d(channels, out_channels, 1, 1) | |
) | |
self.model = nn.Sequential(*model) | |
self.embedding = nn.Embedding(codebook_size, channels) | |
self.is_discrete = is_discrete | |
self.mask_token = nn.Parameter(torch.zeros(1, channels)) | |
self.n_codebooks = n_codebooks | |
if n_codebooks > 1: | |
self.extra_codebooks = nn.ModuleList([ | |
nn.Embedding(codebook_size, channels) for _ in range(n_codebooks - 1) | |
]) | |
self.extra_codebook_mask_tokens = nn.ParameterList([ | |
nn.Parameter(torch.zeros(1, channels)) for _ in range(n_codebooks - 1) | |
]) | |
self.quantizer_dropout = quantizer_dropout | |
if f0_condition: | |
self.f0_embedding = nn.Embedding(n_f0_bins, channels) | |
self.f0_condition = f0_condition | |
self.n_f0_bins = n_f0_bins | |
self.f0_bins = torch.arange(2, 1024, 1024 // n_f0_bins) | |
self.f0_mask = nn.Parameter(torch.zeros(1, channels)) | |
else: | |
self.f0_condition = False | |
if not is_discrete: | |
self.content_in_proj = nn.Linear(in_channels, channels) | |
if vector_quantize: | |
self.vq = VectorQuantize(channels, codebook_size, 8) | |
def forward(self, x, ylens=None, n_quantizers=None, f0=None): | |
# apply token drop | |
if self.training: | |
n_quantizers = torch.ones((x.shape[0],)) * self.n_codebooks | |
dropout = torch.randint(1, self.n_codebooks + 1, (x.shape[0],)) | |
n_dropout = int(x.shape[0] * self.quantizer_dropout) | |
n_quantizers[:n_dropout] = dropout[:n_dropout] | |
n_quantizers = n_quantizers.to(x.device) | |
# decide whether to drop for each sample in batch | |
else: | |
n_quantizers = torch.ones((x.shape[0],), device=x.device) * (self.n_codebooks if n_quantizers is None else n_quantizers) | |
if self.is_discrete: | |
if self.n_codebooks > 1: | |
assert len(x.size()) == 3 | |
x_emb = self.embedding(x[:, 0]) | |
for i, emb in enumerate(self.extra_codebooks): | |
x_emb = x_emb + (n_quantizers > i+1)[..., None, None] * emb(x[:, i+1]) | |
# add mask token if not using this codebook | |
# x_emb = x_emb + (n_quantizers <= i+1)[..., None, None] * self.extra_codebook_mask_tokens[i] | |
x = x_emb | |
elif self.n_codebooks == 1: | |
if len(x.size()) == 2: | |
x = self.embedding(x) | |
else: | |
x = self.embedding(x[:, 0]) | |
else: | |
x = self.content_in_proj(x) | |
# x in (B, T, D) | |
mask = sequence_mask(ylens).unsqueeze(-1) | |
if self.interpolate: | |
x = F.interpolate(x.transpose(1, 2).contiguous(), size=ylens.max(), mode='nearest') | |
else: | |
x = x.transpose(1, 2).contiguous() | |
mask = mask[:, :x.size(2), :] | |
ylens = ylens.clamp(max=x.size(2)).long() | |
if self.f0_condition: | |
if f0 is None: | |
x = x + self.f0_mask.unsqueeze(-1) | |
else: | |
#quantized_f0 = torch.bucketize(f0, self.f0_bins.to(f0.device)) # (N, T) | |
quantized_f0 = f0_to_coarse(f0, self.n_f0_bins) | |
quantized_f0 = quantized_f0.clamp(0, self.n_f0_bins - 1).long() | |
f0_emb = self.f0_embedding(quantized_f0) | |
f0_emb = F.interpolate(f0_emb.transpose(1, 2).contiguous(), size=ylens.max(), mode='nearest') | |
x = x + f0_emb | |
out = self.model(x).transpose(1, 2).contiguous() | |
if hasattr(self, 'vq'): | |
out_q, commitment_loss, codebook_loss, codes, out, = self.vq(out.transpose(1, 2)) | |
out_q = out_q.transpose(1, 2) | |
return out_q * mask, ylens, codes, commitment_loss, codebook_loss | |
olens = ylens | |
return out * mask, olens, None, None, None | |