Staticaliza's picture
Upload 3 files
be0c908 verified
raw
history blame
26.2 kB
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import time
from pathlib import Path
import torch
import torch.nn as nn
import torch.nn.functional as F
from tokenizer import get_tokenizer
try:
from GPTQ import GenericGPTQRunner, InputRecorder
from eval import get_task_dict, evaluate, lm_eval
except:
pass
from model import Transformer
##### Quantization Primitives ######
def dynamically_quantize_per_channel(x, quant_min, quant_max, target_dtype):
# assumes symmetric quantization
# assumes axis == 0
# assumes dense memory format
# TODO(future): relax ^ as needed
# default setup for affine quantization of activations
eps = torch.finfo(torch.float32).eps
# get min and max
min_val, max_val = torch.aminmax(x, dim=1)
# calculate scales and zero_points based on min and max
# reference: https://fburl.com/code/srbiybme
min_val_neg = torch.min(min_val, torch.zeros_like(min_val))
max_val_pos = torch.max(max_val, torch.zeros_like(max_val))
device = min_val_neg.device
# reference: https://fburl.com/code/4wll53rk
max_val_pos = torch.max(-min_val_neg, max_val_pos)
scales = max_val_pos / (float(quant_max - quant_min) / 2)
# ensure scales is the same dtype as the original tensor
scales = torch.clamp(scales, min=eps).to(x.dtype)
zero_points = torch.zeros(min_val_neg.size(), dtype=torch.int64, device=device)
# quantize based on qmin/qmax/scales/zp
# reference: https://www.internalfb.com/code/fbsource/[8edc275012b1]/fbcode/caffe2/torch/ao/quantization/fx/_decomposed.py?lines=63
x_div = x / scales.unsqueeze(-1)
x_round = torch.round(x_div)
x_zp = x_round + zero_points.unsqueeze(-1)
quant = torch.clamp(x_zp, quant_min, quant_max).to(target_dtype)
return quant, scales, zero_points
def get_group_qparams(w, n_bit=4, groupsize=128):
# needed for GPTQ with padding
if groupsize > w.shape[-1]:
groupsize = w.shape[-1]
assert groupsize > 1
assert w.shape[-1] % groupsize == 0
assert w.dim() == 2
to_quant = w.reshape(-1, groupsize)
assert torch.isnan(to_quant).sum() == 0
max_val = to_quant.amax(dim=1, keepdim=True)
min_val = to_quant.amin(dim=1, keepdim=True)
max_int = 2**n_bit - 1
scales = (max_val - min_val).clamp(min=1e-6) / max_int
zeros = min_val + scales * (2 ** (n_bit - 1))
return scales.to(torch.bfloat16).reshape(w.shape[0], -1), zeros.to(
torch.bfloat16
).reshape(w.shape[0], -1)
def pack_scales_and_zeros(scales, zeros):
assert scales.shape == zeros.shape
assert scales.dtype == torch.bfloat16
assert zeros.dtype == torch.bfloat16
return (
torch.cat(
[
scales.reshape(scales.size(0), scales.size(1), 1),
zeros.reshape(zeros.size(0), zeros.size(1), 1),
],
2,
)
.transpose(0, 1)
.contiguous()
)
def unpack_scales_and_zeros(scales_and_zeros):
assert len(scales_and_zeros.shape) == 3 and scales_and_zeros.shape[2] == 2
assert scales_and_zeros.dtype == torch.float
return torch.split(scales_and_zeros.transpose(0, 1), 1, 2)
def group_quantize_tensor_from_qparams(w, scales, zeros, n_bit=4, groupsize=128):
assert groupsize > 1
# needed for GPTQ single column quantize
if groupsize > w.shape[-1] and scales.shape[-1] == 1:
groupsize = w.shape[-1]
assert w.shape[-1] % groupsize == 0
assert w.dim() == 2
to_quant = w.reshape(-1, groupsize)
assert torch.isnan(to_quant).sum() == 0
scales = scales.reshape(-1, 1)
zeros = zeros.reshape(-1, 1)
min_val = zeros - scales * (2 ** (n_bit - 1))
max_int = 2**n_bit - 1
min_int = 0
w_int32 = (
to_quant.sub(min_val)
.div(scales)
.round()
.clamp_(min_int, max_int)
.to(torch.int32)
.reshape_as(w)
)
return w_int32
def group_quantize_tensor(w, n_bit=4, groupsize=128):
scales, zeros = get_group_qparams(w, n_bit, groupsize)
w_int32 = group_quantize_tensor_from_qparams(w, scales, zeros, n_bit, groupsize)
scales_and_zeros = pack_scales_and_zeros(scales, zeros)
return w_int32, scales_and_zeros
def group_dequantize_tensor_from_qparams(
w_int32, scales, zeros, n_bit=4, groupsize=128
):
assert groupsize > 1
# needed for GPTQ single column dequantize
if groupsize > w_int32.shape[-1] and scales.shape[-1] == 1:
groupsize = w_int32.shape[-1]
assert w_int32.shape[-1] % groupsize == 0
assert w_int32.dim() == 2
w_int32_grouped = w_int32.reshape(-1, groupsize)
scales = scales.reshape(-1, 1)
zeros = zeros.reshape(-1, 1)
w_dq = (
w_int32_grouped.sub(2 ** (n_bit - 1)).mul(scales).add(zeros).reshape_as(w_int32)
)
return w_dq
def group_dequantize_tensor(w_int32, scales_and_zeros, n_bit=4, groupsize=128):
scales, zeros = unpack_scales_and_zeros(scales_and_zeros)
return group_dequantize_tensor_from_qparams(
w_int32, scales, zeros, n_bit, groupsize
)
class QuantHandler:
def __init__(self, mod):
self.mod = mod
def create_quantized_state_dict(self) -> "StateDict":
pass
def convert_for_runtime(self) -> "nn.Module":
pass
class GPTQQuantHandler(QuantHandler):
"""
This class implements a GPTQ QuantHandler that can be used to apply GPTQ to a model in concert with the GenericGPTQRunner class.
Unlike the base QuantHandler class, the user does not need to implement the create_quantized_state_dict, instead they have to reimplement
__init__ such that it defines the functions for the quantization mode. User is expected to reimplement convert_for_runtime.
The following functions (which must be defined in __init__) are used to define the quantization mode for both GPTQ and
create_quantized_state_dict. Here is a description of each function.
get_qparams_func:
A function that calculates the quantization qparams for an input tensor.
Args:
weight: A 2d weight tensor with non-integer dtype.
Returns:
qparams: it can have any format but will need to be handled by the other defined functions below.
quantize_func:
A function that applies quantization to an input tensor. It should be noted
that this function needs to be able to handle quantizing the entire weight tensor, a single group,
or a single column.
Args:
weight: A 2d weight tensor with non-integer dtype.
qparams: the output from get_qparams_func
Returns:
quantized_weight: A 2d quantized weight tensor (generally with an integer dtype)
dequantize_func:
A function that dequantizes an input quantized weight tensor. It should be noted
that this function needs to be able to handle dequantizing the entire weight tensor, a single group,
or a single column.
Args:
quantized_weight: A 2d quantized weight tensor (generally with an integer dtype)
qparams: the output from get_qparams_func
Returns:
weight: A 2d weight tensor with non-integer dtype.
combine_qparams_list_func:
A function that combines several qparams into one qparam.
Args:
qparams_list: a list of qparams objects, each obtained by calling get_qparams_func
on a single group from a weight tensor
Returns:
qparams: an object of the same format as the qparams above.
skip_layer_func:
A function that determines which linear layers should be skipped during GPTQ
Args:
weight: A 2d weight tensor with non-integer dtype.
Returns:
skip: boolean indicating whether layer should be skipped
make_names_and_values_dict_func:
A function that prepares the qparams and quantized_weight and creates a dictionary indicating how they
should be inserted into the state_dict. Generally any packing of the weight and qparams should be done here.
Args:
quantized_weight: A 2d quantized weight tensor (generally with an integer dtype)
qparams: the output from get_qparams_func
Returns:
names_and_values_dict: a dictionary mapping the name of the parameters of the quantized module to the
corresponding quantized weights and qparams.
"""
def __init__(self):
assert self.mod is not None
assert self.get_qparams_func is not None
assert self.quantize_func is not None
assert self.dequantize_func is not None
assert self.combine_qparams_list_func is not None
assert self.make_names_and_values_dict_func is not None
@staticmethod
def get_inputs(model, tokenizer, calibration_tasks, calibration_limit, calibration_seq_length, pad_calibration_inputs) -> "MultiInput":
input_recorder = InputRecorder(
model,
tokenizer,
calibration_seq_length,
pad_calibration_inputs,
)
try:
lm_eval.tasks.initialize_tasks()
except:
pass
task_dict = get_task_dict(calibration_tasks)
print("Obtaining GPTQ calibration inputs on: ", calibration_tasks)
evaluate(
input_recorder,
task_dict,
limit=calibration_limit,
)
inputs = input_recorder.get_recorded_inputs()
assert inputs is not None, (
f"No inputs were collected, use a task other than {calibration_tasks}, "+
f"use option pad_calibration_inputs, or decrease calibration_sequence_length (currently "+
f"{calibration_seq_length})"
)
print(f"Obtained {len(inputs[0].values)} calibration samples")
return inputs
@torch.no_grad()
def create_quantized_state_dict(
self,
tokenizer,
blocksize,
percdamp,
groupsize,
calibration_tasks,
calibration_limit,
calibration_seq_length,
pad_calibration_inputs,
) -> "StateDict":
inputs = GPTQQuantHandler.get_inputs(self.mod, tokenizer, calibration_tasks, calibration_limit, calibration_seq_length, pad_calibration_inputs)
print("Tracing model for GPTQ")
GPTQ_runner = GenericGPTQRunner(
self.mod,
inputs,
blocksize,
percdamp,
groupsize,
).configure_quantization_mode(
self.get_qparams_func,
self.quantize_func,
self.dequantize_func,
self.combine_qparams_list_func,
self.make_names_and_values_dict_func,
self.skip_layer_func
)
print("Applying GPTQ to weights")
GPTQ_runner.run()
return GPTQ_runner.get_quantized_state_dict()
def convert_for_runtime(self) -> "nn.Module":
pass
##### Weight-only int8 per-channel quantized code ######
def replace_linear_weight_only_int8_per_channel(module):
for name, child in module.named_children():
if isinstance(child, nn.Linear):
setattr(module, name, WeightOnlyInt8Linear(child.in_features, child.out_features))
else:
replace_linear_weight_only_int8_per_channel(child)
class WeightOnlyInt8QuantHandler:
def __init__(self, mod):
self.mod = mod
@torch.no_grad()
def create_quantized_state_dict(self):
cur_state_dict = self.mod.state_dict()
for fqn, mod in self.mod.named_modules():
if isinstance(mod, torch.nn.Linear):
int8_weight, scales, _ = dynamically_quantize_per_channel(mod.weight.float(), -128, 127, torch.int8)
cur_state_dict[f"{fqn}.weight"] = int8_weight
cur_state_dict[f"{fqn}.scales"] = scales.to(mod.weight.dtype)
return cur_state_dict
def convert_for_runtime(self):
replace_linear_weight_only_int8_per_channel(self.mod)
return self.mod
class WeightOnlyInt8Linear(torch.nn.Module):
__constants__ = ['in_features', 'out_features']
in_features: int
out_features: int
weight: torch.Tensor
def __init__(self, in_features: int, out_features: int, bias: bool = True,
device=None, dtype=None) -> None:
factory_kwargs = {'device': device, 'dtype': dtype}
super().__init__()
self.in_features = in_features
self.out_features = out_features
self.register_buffer("weight", torch.empty((out_features, in_features), dtype=torch.int8))
self.register_buffer("scales", torch.ones(out_features, dtype=torch.bfloat16))
def forward(self, input: torch.Tensor) -> torch.Tensor:
return F.linear(input, self.weight.to(dtype=input.dtype)) * self.scales
##### weight only int4 per channel groupwise quantized code ######
def prepare_int4_weight_and_scales_and_zeros(weight_bf16, groupsize, inner_k_tiles):
weight_int32, scales_and_zeros = group_quantize_tensor(
weight_bf16, n_bit=4, groupsize=groupsize
)
weight_int4pack = torch.ops.aten._convert_weight_to_int4pack(weight_int32, inner_k_tiles)
return weight_int4pack, scales_and_zeros
def linear_forward_int4(x, weight_int4pack, scales_and_zeros, out_features, groupsize):
origin_x_size = x.size()
x = x.reshape(-1, origin_x_size[-1])
c = torch.ops.aten._weight_int4pack_mm(x, weight_int4pack, groupsize, scales_and_zeros)
new_shape = origin_x_size[:-1] + (out_features,)
c = c.reshape(new_shape)
return c
def _check_linear_int4_k(k, groupsize = 1, inner_k_tiles = 1):
return k % groupsize == 0 and k % (inner_k_tiles * 16) == 0
def replace_linear_int4(module, groupsize, inner_k_tiles, padding):
for name, child in module.named_children():
if isinstance(child, nn.Linear):
if _check_linear_int4_k(child.in_features, groupsize, inner_k_tiles):
setattr(module, name, WeightOnlyInt4Linear(
child.in_features, child.out_features, bias=False,
groupsize=groupsize, inner_k_tiles=inner_k_tiles, padding=False,
))
elif padding:
setattr(module, name, WeightOnlyInt4Linear(
child.in_features, child.out_features, bias=False,
groupsize=groupsize, inner_k_tiles=inner_k_tiles, padding=True,
))
else:
replace_linear_int4(child, groupsize, inner_k_tiles, padding)
class WeightOnlyInt4QuantHandler:
def __init__(self, mod, groupsize=128, inner_k_tiles=8, padding=True):
self.mod = mod
self.groupsize = groupsize
self.inner_k_tiles = inner_k_tiles
self.padding = padding
assert groupsize in [32, 64, 128, 256]
assert inner_k_tiles in [2, 4, 8]
@torch.no_grad()
def create_quantized_state_dict(self, use_cuda = True):
if use_cuda:
device="cuda"
else:
device="cpu"
cur_state_dict = self.mod.state_dict()
for fqn, mod in self.mod.named_modules():
if isinstance(mod, torch.nn.Linear):
assert not mod.bias
out_features = mod.out_features
in_features = mod.in_features
assert out_features % 8 == 0, "require out_features % 8 == 0"
print(f"linear: {fqn}, in={in_features}, out={out_features}")
weight = mod.weight.data
if not _check_linear_int4_k(in_features, self.groupsize, self.inner_k_tiles):
if self.padding:
from model import find_multiple
import torch.nn.functional as F
print(f"warning: {fqn} is padded to satisfy in_features % 1024 == 0")
padded_in_features = find_multiple(in_features, 1024)
weight = F.pad(weight, pad=(0, padded_in_features - in_features))
else:
print(f"warning: {fqn} is skipped, int4 requires that in_features is 32, 64, or is divisible by 1024, " +
"and that groupsize and inner_k_tiles*16 evenly divide into it")
continue
weight_int4pack, scales_and_zeros = prepare_int4_weight_and_scales_and_zeros(
weight.to(torch.bfloat16).to(device=device), self.groupsize, self.inner_k_tiles
)
cur_state_dict[f"{fqn}.weight"] = weight_int4pack.to('cpu')
cur_state_dict[f"{fqn}.scales_and_zeros"] = scales_and_zeros.to('cpu')
return cur_state_dict
def convert_for_runtime(self):
replace_linear_int4(self.mod, self.groupsize, self.inner_k_tiles, self.padding)
return self.mod
class WeightOnlyInt4GPTQQuantHandler(GPTQQuantHandler):
def __init__(self, mod, groupsize=128, inner_k_tiles=8, padding=True):
from model import find_multiple
self.mod = mod
self.groupsize = groupsize
self.inner_k_tiles = inner_k_tiles
self.padding = padding
self.get_qparams_func = lambda w: get_group_qparams(w, 4, groupsize)
self.quantize_func = lambda w, qparams: \
group_quantize_tensor_from_qparams(w, qparams[0], qparams[1], 4, groupsize)
self.dequantize_func = lambda q, qparams: \
group_dequantize_tensor_from_qparams(q, qparams[0], qparams[1], 4, groupsize).float()
self.combine_qparams_list_func = lambda qparams_list: \
[torch.cat(x, dim=1) for x in zip(*qparams_list)]
# skip unless padding=True or its correctly sized
self.skip_layer_func = lambda linear_weight: not (
_check_linear_int4_k(linear_weight.shape[-1], groupsize, inner_k_tiles) or padding
)
# we need to do the padding here, both for q and the qparams if necessary
def make_names_and_values_dict_func(q, qparams):
k = q.shape[1]
new_k = find_multiple(k, 1024)
# how much we need to pad the weight
delta_k = new_k - q.shape[1]
final_q = torch.ops.aten._convert_weight_to_int4pack(F.pad(q, pad=(0, delta_k)), inner_k_tiles)
scales_and_zeros = pack_scales_and_zeros(*qparams)
# how many new groups we need for padded weight
delta_groups = new_k // groupsize - scales_and_zeros.shape[0]
final_s_and_z = F.pad(scales_and_zeros, pad=(0,0,0,0,0, delta_groups), value=1)
return {"weight": final_q, "scales_and_zeros": final_s_and_z}
self.make_names_and_values_dict_func = make_names_and_values_dict_func
super().__init__()
def convert_for_runtime(self):
replace_linear_int4(self.mod, self.groupsize, self.inner_k_tiles, self.padding)
return self.mod
class WeightOnlyInt4Linear(torch.nn.Module):
__constants__ = ['in_features', 'out_features']
in_features: int
out_features: int
weight: torch.Tensor
def __init__(
self, in_features: int, out_features: int,
bias=True, device=None, dtype=None, groupsize: int = 128, inner_k_tiles: int = 8, padding: bool = True,
) -> None:
super().__init__()
self.padding = padding
if padding:
from model import find_multiple
self.origin_in_features = in_features
in_features = find_multiple(in_features, 1024)
self.in_features = in_features
self.out_features = out_features
assert not bias, "require bias=False"
self.groupsize = groupsize
self.inner_k_tiles = inner_k_tiles
assert out_features % 8 == 0, "require out_features % 8 == 0"
assert in_features % (inner_k_tiles * 16) == 0, "require in_features % (innerKTiles * 16) == 0"
self.register_buffer(
"weight",
torch.empty((out_features // 8, in_features // (inner_k_tiles * 16), 32, inner_k_tiles // 2), dtype=torch.int32)
)
self.register_buffer(
"scales_and_zeros",
torch.empty((in_features // groupsize, out_features, 2), dtype=torch.bfloat16)
)
def forward(self, input: torch.Tensor) -> torch.Tensor:
input = input.to(torch.bfloat16)
if self.padding:
import torch.nn.functional as F
input = F.pad(input, pad=(0, self.in_features - self.origin_in_features))
return linear_forward_int4(
input,
self.weight, self.scales_and_zeros, self.out_features, self.groupsize
)
def quantize(
checkpoint_path: Path = Path("checkpoints/meta-llama/Llama-2-7b-chat-hf/model.pth"),
mode: str = 'int8',
# following arguments only available when setting int4 quantization.
groupsize: int = 128,
# following arguments only used for GPTQ
calibration_tasks: list = ["hellaswag"],
calibration_limit: int = 1000,
calibration_seq_length: int = 100,
pad_calibration_inputs: bool = False,
percdamp: float = .01,
blocksize: int = 128,
label: str = '',
) -> None:
assert checkpoint_path.is_file(), checkpoint_path
device = 'cpu'
precision = torch.bfloat16
print("Loading model ...")
t0 = time.time()
with torch.device('meta'):
model = Transformer.from_name(checkpoint_path.parent.name)
checkpoint = torch.load(str(checkpoint_path), mmap=True, weights_only=True)
model.load_state_dict(checkpoint, assign=True)
model = model.to(dtype=precision, device=device)
if mode == 'int8':
print("Quantizing model weights for int8 weight-only symmetric per-channel quantization")
quant_handler = WeightOnlyInt8QuantHandler(model)
quantized_state_dict = quant_handler.create_quantized_state_dict()
dir_name = checkpoint_path.parent
base_name = checkpoint_path.name
new_base_name = base_name.replace('.pth', f'{label}int8.pth')
elif mode == 'int4':
print("Quantizing model weights for int4 weight-only affine per-channel groupwise quantization")
quant_handler = WeightOnlyInt4QuantHandler(model, groupsize)
quantized_state_dict = quant_handler.create_quantized_state_dict()
dir_name = checkpoint_path.parent
base_name = checkpoint_path.name
new_base_name = base_name.replace('.pth', f"{label}int4.g{groupsize}.pth")
elif mode == 'int4-gptq':
print("Quantizing model weights for int4 weight-only affine per-channel groupwise quantization using GPTQ...")
quant_handler = WeightOnlyInt4GPTQQuantHandler(model, groupsize)
tokenizer_path = checkpoint_path.parent / "tokenizer.model"
assert tokenizer_path.is_file(), str(tokenizer_path)
tokenizer = get_tokenizer(tokenizer_path, checkpoint_path)
quantized_state_dict = quant_handler.create_quantized_state_dict(
tokenizer,
blocksize,
percdamp,
groupsize,
calibration_tasks,
calibration_limit,
calibration_seq_length,
pad_calibration_inputs
)
dir_name = checkpoint_path.parent
base_name = checkpoint_path.name
new_base_name = base_name.replace('.pth', f"{label}int4-gptq.g{groupsize}.pth")
else:
raise ValueError(f"Invalid quantization mode {mode} needs to be one of [int8, int4, int4-gpptq]")
quantize_path = dir_name / new_base_name
print(f"Writing quantized weights to {quantize_path}")
quantize_path.unlink(missing_ok=True) # remove existing file if one already there
torch.save(quantized_state_dict, quantize_path)
print(f"Quantization complete took {time.time() - t0:.02f} seconds")
return
if __name__ == '__main__':
import argparse
parser = argparse.ArgumentParser(description='Quantize a model.')
parser.add_argument('--checkpoint_path', type=Path, default=Path("checkpoints/meta-llama/Llama-2-7b-chat-hf/model.pth"), help='Path to the model checkpoint to be quantized.')
parser.add_argument('--mode', '-q', type=str, default='int8', choices=['int8', 'int4', 'int4-gptq'], help='type of quantization to perform')
parser.add_argument('--groupsize', type=int, default=32, help='Group size for int4 quantization.')
parser.add_argument('--calibration_tasks', type=str, nargs='+', default=['wikitext'], help='tasks to do gptq calibration on, if doing gptq')
parser.add_argument('--calibration_limit', type=int, default=1000, help='number of samples to use for gptq calibration')
parser.add_argument('--calibration_seq_length', type=int, default=100, help='length of sequences to use for gptq calibration')
parser.add_argument('--pad_calibration_inputs', type=bool, default=False, help='pads sequences shorter than calibration_seq_length to that length, yielding more calibration inputs but running much slower')
parser.add_argument('--percdamp', type=float, default=.01, help='gptq percentage dampening')
parser.add_argument('--blocksize', type=int, default=128, help='blocksize for gptq')
parser.add_argument('--label', type=str, default='_', help='label to add to output filename')
args = parser.parse_args()
quantize(args.checkpoint_path, args.mode, args.groupsize, args.calibration_tasks, args.calibration_limit, args.calibration_seq_length, args.pad_calibration_inputs, args.percdamp, args.blocksize, args.label)