Staticaliza's picture
Upload 3 files
f70c122 verified
raw
history blame
9.35 kB
# Copyright 3D-Speaker (https://github.com/alibaba-damo-academy/3D-Speaker). All Rights Reserved.
# Licensed under the Apache License, Version 2.0 (http://www.apache.org/licenses/LICENSE-2.0)
import torch
import torch.nn.functional as F
import torch.utils.checkpoint as cp
from torch import nn
def get_nonlinear(config_str, channels):
nonlinear = nn.Sequential()
for name in config_str.split('-'):
if name == 'relu':
nonlinear.add_module('relu', nn.ReLU(inplace=True))
elif name == 'prelu':
nonlinear.add_module('prelu', nn.PReLU(channels))
elif name == 'batchnorm':
nonlinear.add_module('batchnorm', nn.BatchNorm1d(channels))
elif name == 'batchnorm_':
nonlinear.add_module('batchnorm',
nn.BatchNorm1d(channels, affine=False))
else:
raise ValueError('Unexpected module ({}).'.format(name))
return nonlinear
def statistics_pooling(x, dim=-1, keepdim=False, unbiased=True, eps=1e-2):
mean = x.mean(dim=dim)
std = x.std(dim=dim, unbiased=unbiased)
stats = torch.cat([mean, std], dim=-1)
if keepdim:
stats = stats.unsqueeze(dim=dim)
return stats
class StatsPool(nn.Module):
def forward(self, x):
return statistics_pooling(x)
class TDNNLayer(nn.Module):
def __init__(self,
in_channels,
out_channels,
kernel_size,
stride=1,
padding=0,
dilation=1,
bias=False,
config_str='batchnorm-relu'):
super(TDNNLayer, self).__init__()
if padding < 0:
assert kernel_size % 2 == 1, 'Expect equal paddings, but got even kernel size ({})'.format(
kernel_size)
padding = (kernel_size - 1) // 2 * dilation
self.linear = nn.Conv1d(in_channels,
out_channels,
kernel_size,
stride=stride,
padding=padding,
dilation=dilation,
bias=bias)
self.nonlinear = get_nonlinear(config_str, out_channels)
def forward(self, x):
x = self.linear(x)
x = self.nonlinear(x)
return x
class CAMLayer(nn.Module):
def __init__(self,
bn_channels,
out_channels,
kernel_size,
stride,
padding,
dilation,
bias,
reduction=2):
super(CAMLayer, self).__init__()
self.linear_local = nn.Conv1d(bn_channels,
out_channels,
kernel_size,
stride=stride,
padding=padding,
dilation=dilation,
bias=bias)
self.linear1 = nn.Conv1d(bn_channels, bn_channels // reduction, 1)
self.relu = nn.ReLU(inplace=True)
self.linear2 = nn.Conv1d(bn_channels // reduction, out_channels, 1)
self.sigmoid = nn.Sigmoid()
def forward(self, x):
y = self.linear_local(x)
context = x.mean(-1, keepdim=True)+self.seg_pooling(x)
context = self.relu(self.linear1(context))
m = self.sigmoid(self.linear2(context))
return y*m
def seg_pooling(self, x, seg_len=100, stype='avg'):
if stype == 'avg':
seg = F.avg_pool1d(x, kernel_size=seg_len, stride=seg_len, ceil_mode=True)
elif stype == 'max':
seg = F.max_pool1d(x, kernel_size=seg_len, stride=seg_len, ceil_mode=True)
else:
raise ValueError('Wrong segment pooling type.')
shape = seg.shape
seg = seg.unsqueeze(-1).expand(*shape, seg_len).reshape(*shape[:-1], -1)
seg = seg[..., :x.shape[-1]]
return seg
class CAMDenseTDNNLayer(nn.Module):
def __init__(self,
in_channels,
out_channels,
bn_channels,
kernel_size,
stride=1,
dilation=1,
bias=False,
config_str='batchnorm-relu',
memory_efficient=False):
super(CAMDenseTDNNLayer, self).__init__()
assert kernel_size % 2 == 1, 'Expect equal paddings, but got even kernel size ({})'.format(
kernel_size)
padding = (kernel_size - 1) // 2 * dilation
self.memory_efficient = memory_efficient
self.nonlinear1 = get_nonlinear(config_str, in_channels)
self.linear1 = nn.Conv1d(in_channels, bn_channels, 1, bias=False)
self.nonlinear2 = get_nonlinear(config_str, bn_channels)
self.cam_layer = CAMLayer(bn_channels,
out_channels,
kernel_size,
stride=stride,
padding=padding,
dilation=dilation,
bias=bias)
def bn_function(self, x):
return self.linear1(self.nonlinear1(x))
def forward(self, x):
if self.training and self.memory_efficient:
x = cp.checkpoint(self.bn_function, x)
else:
x = self.bn_function(x)
x = self.cam_layer(self.nonlinear2(x))
return x
class CAMDenseTDNNBlock(nn.ModuleList):
def __init__(self,
num_layers,
in_channels,
out_channels,
bn_channels,
kernel_size,
stride=1,
dilation=1,
bias=False,
config_str='batchnorm-relu',
memory_efficient=False):
super(CAMDenseTDNNBlock, self).__init__()
for i in range(num_layers):
layer = CAMDenseTDNNLayer(in_channels=in_channels + i * out_channels,
out_channels=out_channels,
bn_channels=bn_channels,
kernel_size=kernel_size,
stride=stride,
dilation=dilation,
bias=bias,
config_str=config_str,
memory_efficient=memory_efficient)
self.add_module('tdnnd%d' % (i + 1), layer)
def forward(self, x):
for layer in self:
x = torch.cat([x, layer(x)], dim=1)
return x
class TransitLayer(nn.Module):
def __init__(self,
in_channels,
out_channels,
bias=True,
config_str='batchnorm-relu'):
super(TransitLayer, self).__init__()
self.nonlinear = get_nonlinear(config_str, in_channels)
self.linear = nn.Conv1d(in_channels, out_channels, 1, bias=bias)
def forward(self, x):
x = self.nonlinear(x)
x = self.linear(x)
return x
class DenseLayer(nn.Module):
def __init__(self,
in_channels,
out_channels,
bias=False,
config_str='batchnorm-relu'):
super(DenseLayer, self).__init__()
self.linear = nn.Conv1d(in_channels, out_channels, 1, bias=bias)
self.nonlinear = get_nonlinear(config_str, out_channels)
def forward(self, x):
if len(x.shape) == 2:
x = self.linear(x.unsqueeze(dim=-1)).squeeze(dim=-1)
else:
x = self.linear(x)
x = self.nonlinear(x)
return x
class BasicResBlock(nn.Module):
expansion = 1
def __init__(self, in_planes, planes, stride=1):
super(BasicResBlock, self).__init__()
self.conv1 = nn.Conv2d(in_planes,
planes,
kernel_size=3,
stride=(stride, 1),
padding=1,
bias=False)
self.bn1 = nn.BatchNorm2d(planes)
self.conv2 = nn.Conv2d(planes,
planes,
kernel_size=3,
stride=1,
padding=1,
bias=False)
self.bn2 = nn.BatchNorm2d(planes)
self.shortcut = nn.Sequential()
if stride != 1 or in_planes != self.expansion * planes:
self.shortcut = nn.Sequential(
nn.Conv2d(in_planes,
self.expansion * planes,
kernel_size=1,
stride=(stride, 1),
bias=False),
nn.BatchNorm2d(self.expansion * planes))
def forward(self, x):
out = F.relu(self.bn1(self.conv1(x)))
out = self.bn2(self.conv2(out))
out += self.shortcut(x)
out = F.relu(out)
return out