Stanlito's picture
Update app.py
ee948a6 verified
from transformers import NougatProcessor, VisionEncoderDecoderModel
import gradio as gr
import torch
from PIL import Image
from pathlib import Path
from pdf2image import convert_from_path
import spaces
# Load the model and processor
processor = NougatProcessor.from_pretrained("facebook/nougat-small")
model = VisionEncoderDecoderModel.from_pretrained("facebook/nougat-small")
device = "cuda" if torch.cuda.is_available() else "cpu"
model.to(device)
print(f"Using {device} device")
context_length = 2048
@spaces.GPU
def extract_text_from_image(image):
"""
Extract text from PIL image
Args:
image (PIL.Image): Input image
Returns:
str: Extracted text from the image
"""
# prepare PDF image for the model
pixel_values = processor(image, return_tensors="pt").pixel_values
# generate transcription
outputs = model.generate(
pixel_values.to(device),
min_length=1,
max_new_tokens=context_length,
bad_words_ids=[[processor.tokenizer.unk_token_id]],
)
page_sequence = processor.batch_decode(outputs, skip_special_tokens=True)[0]
page_sequence = processor.post_process_generation(page_sequence, fix_markdown=False)
return page_sequence
@spaces.GPU(duration=120)
def extract_text_from_pdf(pdf_path, progress=gr.Progress()):
"""
Extract text from PDF
Args:
pdf_path (str): Path to the PDF file
progress (gr.Progress): Progress bar
Returns:
str: Extracted text from the PDF
"""
progress(0, desc="Starting...")
images = convert_from_path(pdf_path)
texts = []
for image in progress.tqdm(images):
extracted_text = extract_text_from_image(image)
texts.append(extracted_text)
return "\n".join(texts)
model_description = """
This is a demo for the Arabic Small Nougat model. It is an end-to-end OCR model that can extract text from images and PDFs.
- The model is trained on the [Khatt dataset](https://huggingface.co./datasets/Fakhraddin/khatt) and custom made dataset.
- The model is a finetune of [facebook/nougat-small](https://huggingface.co./facebook/nougat-small) model.
**Note**: The model is a prototype in my book and may not work well on all types of images and PDFs. **Check the output carefully before using it for any serious work.**
"""
example_images = [Image.open(Path(__file__).parent / "book_page.jpeg")]
with gr.Blocks(title="Arabic Small Nougat") as demo:
gr.HTML("<h1 style='text-align: center'>Arabic End-to-End Structured OCR for textbooks</h1>")
gr.Markdown(model_description)
with gr.Tab("Extract Text from Image"):
with gr.Row():
with gr.Column():
input_image = gr.Image(label="Input Image", type="pil")
image_submit_button = gr.Button(value="Submit", variant="primary")
output = gr.Markdown(label="Output Markdown", rtl=True)
image_submit_button.click(extract_text_from_image, inputs=[input_image], outputs=output)
gr.Examples(example_images, [input_image], output, extract_text_from_image, cache_examples=True)
with gr.Tab("Extract Text from PDF"):
with gr.Row():
with gr.Column():
pdf = gr.File(label="Input PDF", type="filepath")
pdf_submit_button = gr.Button(value="Submit", variant="primary")
output = gr.Markdown(label="Output Markdown", rtl=True)
pdf_submit_button.click(extract_text_from_pdf, inputs=[pdf], outputs=output)
demo.queue().launch(share=False)