import gradio as gr import subprocess import os import shutil import tempfile import spaces import torch import sys import uuid import re print("Installing flash-attn...") # Install flash attention subprocess.run( "pip install flash-attn --no-build-isolation", env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"}, shell=True ) from huggingface_hub import snapshot_download # Create xcodec_mini_infer folder folder_path = './xcodec_mini_infer' # Create the folder if it doesn't exist if not os.path.exists(folder_path): os.mkdir(folder_path) print(f"Folder created at: {folder_path}") else: print(f"Folder already exists at: {folder_path}") snapshot_download( repo_id="m-a-p/xcodec_mini_infer", local_dir="./xcodec_mini_infer" ) # Change to the "inference" directory inference_dir = "." try: os.chdir(inference_dir) print(f"Changed working directory to: {os.getcwd()}") except FileNotFoundError: print(f"Directory not found: {inference_dir}") exit(1) sys.path.append(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'xcodec_mini_infer')) sys.path.append(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'xcodec_mini_infer', 'descriptaudiocodec')) # don't change above code import argparse import numpy as np import json from omegaconf import OmegaConf import torchaudio from torchaudio.transforms import Resample import soundfile as sf from tqdm import tqdm from einops import rearrange from codecmanipulator import CodecManipulator from mmtokenizer import _MMSentencePieceTokenizer from transformers import AutoTokenizer, AutoModelForCausalLM, LogitsProcessor, LogitsProcessorList import glob import time import copy from collections import Counter from models.soundstream_hubert_new import SoundStream device = "cuda:0" # Load model and tokenizer outside the generation function (load once) print("Loading model...") model = AutoModelForCausalLM.from_pretrained( "m-a-p/YuE-s1-7B-anneal-en-cot", # "m-a-p/YuE-s1-7B-anneal-en-icl", torch_dtype=torch.float16, attn_implementation="flash_attention_2", ).to(device) model.eval() print("Model loaded.") basic_model_config = './xcodec_mini_infer/final_ckpt/config.yaml' resume_path = './xcodec_mini_infer/final_ckpt/ckpt_00360000.pth' mmtokenizer = _MMSentencePieceTokenizer("./mm_tokenizer_v0.2_hf/tokenizer.model") codectool = CodecManipulator("xcodec", 0, 1) model_config = OmegaConf.load(basic_model_config) # Load codec model codec_model = eval(model_config.generator.name)(**model_config.generator.config).to(device) parameter_dict = torch.load(resume_path, map_location='cpu') codec_model.load_state_dict(parameter_dict['codec_model']) codec_model.eval() print("Codec model loaded.") class BlockTokenRangeProcessor(LogitsProcessor): def __init__(self, start_id, end_id): self.blocked_token_ids = list(range(start_id, end_id)) def __call__(self, input_ids, scores): scores[:, self.blocked_token_ids] = -float("inf") return scores def load_audio_mono(filepath, sampling_rate=16000): audio, sr = torchaudio.load(filepath) # Convert to mono audio = torch.mean(audio, dim=0, keepdim=True) # Resample if needed if sr != sampling_rate: resampler = Resample(orig_freq=sr, new_freq=sampling_rate) audio = resampler(audio) return audio def split_lyrics(lyrics: str): pattern = r"\[(\w+)\](.*?)\n(?=\[|\Z)" segments = re.findall(pattern, lyrics, re.DOTALL) structured_lyrics = [f"[{seg[0]}]\n{seg[1].strip()}\n\n" for seg in segments] return structured_lyrics @spaces.GPU(duration=175) def generate_music( genre_txt=None, lyrics_txt=None, run_n_segments=2, max_new_tokens=22, use_audio_prompt=False, audio_prompt_path="", prompt_start_time=0.0, prompt_end_time=30.0, cuda_idx=0, rescale=False, ): """ Generates music based on given genre and lyrics, optionally using an audio prompt. This function orchestrates the music generation process, including prompt formatting, model inference, and audio post-processing. """ if use_audio_prompt and not audio_prompt_path: raise FileNotFoundError("Please provide an audio prompt file when 'Use Audio Prompt' is enabled!") cuda_idx = cuda_idx max_new_tokens = max_new_tokens * 100 with tempfile.TemporaryDirectory() as output_dir: stage1_output_dir = os.path.join(output_dir, f"stage1") os.makedirs(stage1_output_dir, exist_ok=True) stage1_output_set = [] genres = genre_txt.strip() lyrics = split_lyrics(lyrics_txt + "\n") # instruction full_lyrics = "\n".join(lyrics) prompt_texts = [f"Generate music from the given lyrics segment by segment.\n[Genre] {genres}\n{full_lyrics}"] prompt_texts += lyrics random_id = uuid.uuid4() raw_output = None # Decoding config top_p = 0.93 temperature = 1.0 repetition_penalty = 1.2 start_of_segment = mmtokenizer.tokenize('[start_of_segment]') end_of_segment = mmtokenizer.tokenize('[end_of_segment]') # Format text prompt run_n_segments = min(run_n_segments + 1, len(lyrics)) print(list(enumerate(tqdm(prompt_texts[:run_n_segments])))) for i, p in enumerate(tqdm(prompt_texts[:run_n_segments])): section_text = p.replace('[start_of_segment]', '').replace('[end_of_segment]', '') guidance_scale = 1.5 if i <= 1 else 1.2 # Guidance scale adjusted based on segment index if i == 0: continue if i == 1: if use_audio_prompt: audio_prompt = load_audio_mono(audio_prompt_path) audio_prompt.unsqueeze_(0) with torch.no_grad(): raw_codes = codec_model.encode(audio_prompt.to(device), target_bw=0.5) raw_codes = raw_codes.transpose(0, 1) raw_codes = raw_codes.cpu().numpy().astype(np.int16) # Format audio prompt code_ids = codectool.npy2ids(raw_codes[0]) audio_prompt_codec = code_ids[int(prompt_start_time * 50): int(prompt_end_time * 50)] # 50 is tps of xcodec audio_prompt_codec_ids = [mmtokenizer.soa] + codectool.sep_ids + audio_prompt_codec + [ mmtokenizer.eoa] sentence_ids = mmtokenizer.tokenize("[start_of_reference]") + audio_prompt_codec_ids + mmtokenizer.tokenize( "[end_of_reference]") head_id = mmtokenizer.tokenize(prompt_texts[0]) + sentence_ids else: head_id = mmtokenizer.tokenize(prompt_texts[0]) prompt_ids = head_id + start_of_segment + mmtokenizer.tokenize(section_text) + [mmtokenizer.soa] + codectool.sep_ids else: prompt_ids = end_of_segment + start_of_segment + mmtokenizer.tokenize(section_text) + [mmtokenizer.soa] + codectool.sep_ids prompt_ids = torch.as_tensor(prompt_ids).unsqueeze(0).to(device) input_ids = torch.cat([raw_output, prompt_ids], dim=1) if i > 1 else prompt_ids # Use window slicing in case output sequence exceeds the context of model max_context = 16384 - max_new_tokens - 1 if input_ids.shape[-1] > max_context: print( f'Section {i}: output length {input_ids.shape[-1]} exceeding context length {max_context}, now using the last {max_context} tokens.') input_ids = input_ids[:, -(max_context):] with torch.inference_mode(), torch.autocast(device_type='cuda', dtype=torch.float16): output_seq = model.generate( input_ids=input_ids, max_new_tokens=max_new_tokens, min_new_tokens=100, # Keep min_new_tokens to avoid short generations do_sample=True, top_p=top_p, temperature=temperature, repetition_penalty=repetition_penalty, eos_token_id=mmtokenizer.eoa, pad_token_id=mmtokenizer.eoa, logits_processor=LogitsProcessorList([BlockTokenRangeProcessor(0, 32002), BlockTokenRangeProcessor(32016, 32016)]), guidance_scale=guidance_scale, use_cache=True, num_beams=1 ) if output_seq[0][-1].item() != mmtokenizer.eoa: tensor_eoa = torch.as_tensor([[mmtokenizer.eoa]]).to(model.device) output_seq = torch.cat((output_seq, tensor_eoa), dim=1) if i > 1: raw_output = torch.cat([raw_output, prompt_ids, output_seq[:, input_ids.shape[-1]:]], dim=1) else: raw_output = output_seq print(len(raw_output)) # save raw output and check sanity ids = raw_output[0].cpu().numpy() soa_idx = np.where(ids == mmtokenizer.soa)[0].tolist() eoa_idx = np.where(ids == mmtokenizer.eoa)[0].tolist() if len(soa_idx) != len(eoa_idx): raise ValueError(f'invalid pairs of soa and eoa, Num of soa: {len(soa_idx)}, Num of eoa: {len(eoa_idx)}') vocals = [] instrumentals = [] range_begin = 1 if use_audio_prompt else 0 for i in range(range_begin, len(soa_idx)): codec_ids = ids[soa_idx[i] + 1:eoa_idx[i]] if codec_ids[0] == 32016: codec_ids = codec_ids[1:] codec_ids = codec_ids[:2 * (len(codec_ids) // 2)] # Ensure even length for reshape vocals_ids = codectool.ids2npy(rearrange(codec_ids, "(n b) -> b n", b=2)[0]) vocals.append(vocals_ids) instrumentals_ids = codectool.ids2npy(rearrange(codec_ids, "(n b) -> b n", b=2)[1]) instrumentals.append(instrumentals_ids) vocals = np.concatenate(vocals, axis=1) instrumentals = np.concatenate(instrumentals, axis=1) vocal_save_path = os.path.join(stage1_output_dir, f"vocal_{random_id}".replace('.', '@') + '.npy') inst_save_path = os.path.join(stage1_output_dir, f"instrumental_{random_id}".replace('.', '@') + '.npy') np.save(vocal_save_path, vocals) np.save(inst_save_path, instrumentals) stage1_output_set.append(vocal_save_path) stage1_output_set.append(inst_save_path) print("Converting to Audio...") # convert audio tokens to audio def save_audio(wav: torch.Tensor, path, sample_rate: int, rescale: bool = False): folder_path = os.path.dirname(path) if not os.path.exists(folder_path): os.makedirs(folder_path) limit = 0.99 max_val = wav.abs().max() wav = wav * min(limit / max_val, 1) if rescale else wav.clamp(-limit, limit) torchaudio.save(str(path), wav, sample_rate=sample_rate, encoding='PCM_S', bits_per_sample=16) # reconstruct tracks recons_output_dir = os.path.join(output_dir, "recons") recons_mix_dir = os.path.join(recons_output_dir, 'mix') os.makedirs(recons_mix_dir, exist_ok=True) tracks = [] for npy in stage1_output_set: codec_result = np.load(npy) decodec_rlt = [] with torch.no_grad(): decoded_waveform = codec_model.decode( torch.as_tensor(codec_result.astype(np.int16), dtype=torch.long).unsqueeze(0).permute(1, 0, 2).to(device)) decoded_waveform = decoded_waveform.cpu().squeeze(0) decodec_rlt.append(torch.as_tensor(decoded_waveform)) decodec_rlt = torch.cat(decodec_rlt, dim=-1) save_path = os.path.join(recons_output_dir, os.path.splitext(os.path.basename(npy))[0] + ".mp3") # Save as mp3 for gradio tracks.append(save_path) save_audio(decodec_rlt, save_path, 16000) # mix tracks for inst_path in tracks: try: if (inst_path.endswith('.wav') or inst_path.endswith('.mp3')) and 'instrumental' in inst_path: # find pair vocal_path = inst_path.replace('instrumental', 'vocal') if not os.path.exists(vocal_path): continue # mix recons_mix = os.path.join(recons_mix_dir, os.path.basename(inst_path).replace('instrumental', 'mixed')) vocal_stem, sr = sf.read(vocal_path) instrumental_stem, _ = sf.read(inst_path) mix_stem = (vocal_stem + instrumental_stem) / 1 return (sr, (mix_stem * 32767).astype(np.int16)), (sr, (vocal_stem * 32767).astype(np.int16)), (sr, (instrumental_stem * 32767).astype(np.int16)) except Exception as e: print(e) return None, None, None # Gradio Interface with gr.Blocks() as demo: with gr.Column(): gr.Markdown("# YuE: Open Music Foundation Models for Full-Song Generation") gr.HTML("""
""") with gr.Row(): with gr.Column(): genre_txt = gr.Textbox(label="Genre") lyrics_txt = gr.Textbox(label="Lyrics") use_audio_prompt = gr.Checkbox(label="Use Audio Prompt?", value=False) audio_prompt_input = gr.Audio(type="filepath", label="Audio Prompt (Optional)") with gr.Column(): num_segments = gr.Number(label="Number of Segments", value=2, interactive=True) max_new_tokens = gr.Slider(label="Duration of song", minimum=1, maximum=30, step=1, value=15, interactive=True) submit_btn = gr.Button("Submit") music_out = gr.Audio(label="Mixed Audio Result") with gr.Accordion(label="Vocal and Instrumental Result", open=False): vocal_out = gr.Audio(label="Vocal Audio") instrumental_out = gr.Audio(label="Instrumental Audio") gr.Markdown("## Call for Contributions\nIf you find this space interesting please feel free to contribute.") # When the "Submit" button is clicked, pass the additional audio-related inputs to the function. submit_btn.click( fn=generate_music, inputs=[ genre_txt, lyrics_txt, num_segments, max_new_tokens, use_audio_prompt, audio_prompt_input, ], outputs=[music_out, vocal_out, instrumental_out] ) # Examples updated to only include text inputs gr.Examples( examples=[ [ "rap piano street tough piercing vocal hip-hop synthesizer clear vocal male", """[verse] Woke up in the morning, sun is shining bright Chasing all my dreams, gotta get my mind right City lights are fading, but my vision's clear Got my team beside me, no room for fear [chorus] Walking through the streets, beats inside my head Every step I take, closer to the bread People passing by, they don't understand Building up my future with my own two hands """ ], [ "Bass Metalcore Thrash Metal Furious bright vocal male Angry aggressive vocal Guitar", """[verse] Step back cause I'll ignite Won't quit without a fight No escape, gear up, it's a fierce fight Brace up, raise your hands up and light Fear the might. Step back cause I'll ignite Won't back down without a fight It keeps going and going, the heat is on. [chorus] Hot flame. Hot flame. Still here, still holding aim I don't care if I'm bright or dim: nah. I've made it clear, I'll make it again All I want is my crew and my gain. I'm feeling wild, got a bit of rebel style. Locked inside my mind, hot flame. """ ] ], inputs=[genre_txt, lyrics_txt], outputs=[music_out, vocal_out, instrumental_out], cache_examples=True, cache_mode="eager", fn=generate_music ) demo.queue().launch(show_error=True)